278 research outputs found

    The potential for sand dams to increase the adaptive capacity of East African drylands to climate change

    Get PDF
    Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change. A potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agro-ecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts. This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index. The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought. The observed findings corroborate modelling-based research which identified related impacts on ground water, land cover, and socio-economic indicators. Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands. It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands

    Translating the Dutch walking stairs, walking ability and rising and sitting questionnaires into German and assessing their concurrent validity with VAS measures of pain and activities in daily living

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Dutch Walking Stairs, Walking Ability and Rising and Sitting Questionnaires are three validated instruments to measure physical activity and limitations in daily living in patients with lower extremity disorders living at home of which no German equivalents are available. Our scope was to translate the Walking Stairs, Walking Ability and Rising and Sitting Questionnaires into German and to verify its concurrent validity in the two domains pain and activities in daily living by comparing them with the corresponding measures on the Visual Analogue Scale.</p> <p>Methods</p> <p>We translated the Walking Stairs, Walking Ability and Rising and Sitting Questionnaires according to published guidelines. Demographic data and validity were assessed in 52 consecutive patients with Complex Regional Pain Syndrome 1 of the lower extremity. Information on age, duration of symptoms, type of Complex Regional Pain Syndrome 1 and type of initiating event were obtained. We assessed the concurrent validity in the two domains pain and activities in daily living by comparing them with the corresponding measures on the Visual Analogue Scale.</p> <p>Results</p> <p>We found that variability in the German Walking Stairs, Walking Ability and Rising and Sitting Questionnaires was largely explained by measures of pain and activities in daily living on the Visual Analogue Scale.</p> <p>Conclusion</p> <p>Our study shows that the domains pain and activities in daily living are properly represented in the German versions of the Walking Stairs, Walking Ability and Raising and Sitting Questionnaires. We would like to propagate their use in clinical practice and research alike.</p

    Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma

    Get PDF
    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in "IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be published in PRAMANA - Journal of Physics (Indian Academy of Science

    The effect of high tibial osteotomy on the results of total knee arthroplasty: a matched case control study

    Get PDF
    BACKGROUND: We performed a matched case control study to assess the effect of prior high tibia valgus producing osteotomy on results and complications of total knee arthroplasty (TKA). METHODS: From 1996 until 2003 356 patients underwent all cemented primary total knee replacement in our institution. Twelve patients with a history of 14 HTO were identified and matched to a control group of 12 patients with 14 primary TKA without previous HTO. The match was made for gender, age, date of surgery, body mass index, aetiology and type of prosthesis. Clinical and radiographic outcome were evaluated after a median duration of follow-up of 3.7 years (minimum, 2.3 years). The SPSS program was used for statistical analyses. RESULTS: The index group had more perioperative blood loss and exposure difficulties with one tibial tuberosity osteotomy and three patients with lateral retinacular releases. No such procedures were needed in the control group. Mid-term HSS, KSS and WOMAC scores were less favourable for the index group, but these differences were not significant. The tibial slope of patients with prior HTO was significantly decreased after this procedure. The tibial posterior inclination angle was corrected during knee replacement but posterior inclination was significantly less compared to the control group. No deep infection or knee component loosening were seen in the group with prior HTO. CONCLUSION: We conclude that TKA after HTO seems to be technically more demanding than a primary knee arthroplasty, but clinical outcome was almost identical to a matched group that had no HTO previously

    Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex

    Get PDF
    Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Get PDF
    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions
    • …
    corecore