6,232 research outputs found

    Identifying Mislabeled Training Data

    Full text link
    This paper presents a new approach to identifying and eliminating mislabeled training instances for supervised learning. The goal of this approach is to improve classification accuracies produced by learning algorithms by improving the quality of the training data. Our approach uses a set of learning algorithms to create classifiers that serve as noise filters for the training data. We evaluate single algorithm, majority vote and consensus filters on five datasets that are prone to labeling errors. Our experiments illustrate that filtering significantly improves classification accuracy for noise levels up to 30 percent. An analytical and empirical evaluation of the precision of our approach shows that consensus filters are conservative at throwing away good data at the expense of retaining bad data and that majority filters are better at detecting bad data at the expense of throwing away good data. This suggests that for situations in which there is a paucity of data, consensus filters are preferable, whereas majority vote filters are preferable for situations with an abundance of data

    Human-Inspired Neurorobotic System for Classifying Surface Textures by Touch

    Get PDF
    © 2016 IEEE. Giving robots the ability to classify surface textures requires appropriate sensors and algorithms. Inspired by the biology of human tactile perception, we implement a neurorobotic texture classifier with a recurrent spiking neural network, using a novel semisupervised approach for classifying dynamic stimuli. Input to the network is supplied by accelerometers mounted on a robotic arm. The sensor data are encoded by a heterogeneous population of neurons, modeled to match the spiking activity of mechanoreceptor cells. This activity is convolved by a hidden layer using bandpass filters to extract nonlinear frequency information from the spike trains. The resulting high-dimensional feature representation is then continuously classified using a neurally implemented support vector machine. We demonstrate that our system classifies 18 metal surface textures scanned in two opposite directions at a constant velocity. We also demonstrate that our approach significantly improves upon a baseline model that does not use the described feature extraction. This method can be performed in real-time using neuromorphic hardware, and can be extended to other applications that process dynamic stimuli online

    Desirable Components for a Customized, Home-Based, Digital Care-Management App for Children and Young People With Long-Term, Chronic Conditions: A Qualitative Exploration

    Get PDF
    Background: Mobile apps for mobile phones and tablet devices are widely used by children and young people aged 0-18 years with long-term health conditions, such as chronic kidney disease (CKD), and their healthy peers for social networking or gaming. They are also poised to become a major source of health guidance. However, app development processes that are coproduced, rigorously developed, and evaluated to provide tailored, condition-specific, practical advice on day-to-day care management are seldom systematic or sufficiently described to enable replication. Furthermore, attempts to extrapolate to the real world are hampered by a poor understanding of the effects of key elements of app components. Therefore, effective and cost-effective novel, digital apps that will effectively and safely support care management are critical and timely. To inform development of such an app for children with CKD, a user requirements-gathering exercise was first needed. Objective: To explore the views of children with CKD, their parents, and health care professionals to inform future development of a child-focused, care-management app. Methods: Using age- and developmentally appropriate methods, we interviewed 36 participants: 5-10-year-olds (n=6), 11-14-year-olds (n=6), 15-18-year-olds (n=5), mothers (n=10), fathers (n=2), and health care professionals (n=7). Data were analyzed using Framework Analysis and behavior change theories. Results: Of the 27 interviews, 19 (70%) interviews were individual and 8 (30%) were joint—5 out of 8 (63%) joint interviews were with a child or young person and their parent, 1 out of 8 (13%) were with a child and both parents, and 2 out of 8 (25%) were with 2 professionals. Three key themes emerged to inform development of a software requirement specification for a future home-based, digital care-management app intervention: (1) Gaps in current online information and support, (2) Difficulties experienced by children with a long-term condition, and (3) Suggestions for a digital care-management app. Reported gaps included the fact that current online information is not usually appropriate for children as it is “dry” and “boring,” could be “scary,” and was either hard to understand or not relevant to individuals’ circumstances. For children, searching online was much less accessible than using a professional-endorsed mobile app. Children also reported difficulty explaining their condition to others, maintaining treatment adherence, coping with feeling isolated, and with trying to live a “normal” life. There was recognition that a developmentally appropriate, CKD-specific app could support the process of explaining the condition to healthy peers, reducing isolation, adhering to care-management plans, and living a “normal” life. Participants recommended a range of media and content to include in a tailored, interactive, age- and developmentally appropriate app. For example, the user would be able to enter their age and diagnosis so that only age-appropriate and condition-specific content is displayed. Conclusions: Future development of a digital app that meets the identified information and support needs and preferences of children with CKD will maximize its utility, thereby augmenting CKD caregiving and optimizing outcomes

    Mastering Regular Expressions

    Get PDF

    The classification of freezing cold injuries - a NATO research task group position paper

    Get PDF
    Introduction: Freezing cold injuries (FCI) are a common risk in extreme cold weather operations. Although the risks have long been recognised, injury occurrences tend to be sparse and geographically distributed, with relatively few cases to study in a systematic way. The first challenge to improve FCI medical management is to develop a common nomenclature for FCI classification. This is critical for the development of meaningful epidemiological reports on the magnitude and severity of FCI, for the standardisation of patient inclusion criteria for treatment studies, and for the development of clinical diagnosis and treatment algorithms. Methodology: A scoping review of the literature using PubMed and cross-checked with Google Scholar, using search terms related to freezing cold injury and frostbite, highlighted a paucity of published clinical papers and little agreement on classification schemes. Results: A total of 74 papers were identified, and 28 were included in the review. Published reports and studies can be generally grouped into four different classification schemes that are based on (1) injury morphology; (2) signs and symptoms; (3) pathophysiology; and (4) clinical outcome. The nomenclature in the different classification systems is not coherent and the discrete classification limits are not evidence based. Conclusions: All the classification systems are necessary and relevant to FCI medical management for sustainment of soldier health and performance in cold weather operations and winter warfare. Future FCI reports should clearly characterise the nature of the FCI into existing classification schemes for surveillance (morphology, symptoms, and appearance), identifying risk-factors, clinical guidelines, and agreed inclusion/exclusion criteria for a future treatment trial

    Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy

    Get PDF
    Background: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. Material and Methods: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). Results: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. Conclusion: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment

    Detecting One-variable Patterns

    Full text link
    Given a pattern p=s1x1s2x2sr1xr1srp = s_1x_1s_2x_2\cdots s_{r-1}x_{r-1}s_r such that x1,x2,,xr1{x,x}x_1,x_2,\ldots,x_{r-1}\in\{x,\overset{{}_{\leftarrow}}{x}\}, where xx is a variable and x\overset{{}_{\leftarrow}}{x} its reversal, and s1,s2,,srs_1,s_2,\ldots,s_r are strings that contain no variables, we describe an algorithm that constructs in O(rn)O(rn) time a compact representation of all PP instances of pp in an input string of length nn over a polynomially bounded integer alphabet, so that one can report those instances in O(P)O(P) time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201

    Land and cryosphere products from Suomi NPP VIIRS: overview and status

    Get PDF
    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS

    Hole concentration and phonon renormalization in Ca-doped YBa_2Cu_3O_y (6.76 < y < 7.00)

    Full text link
    In order to access the overdoped regime of the YBa_2Cu_3O_y phase diagram, 2% Ca is substituted for Y in YBa_2Cu_3O_y (y = 7.00,6.93,6.88,6.76). Raman scattering studies have been carried out on these four single crystals. Measurements of the superconductivity-induced renormalization in frequency (Delta \omega) and linewidth (\Delta 2\gamma) of the 340 cm^{-1} B_{1g} phonon demonstrate that the magnitude of the renormalization is directly related to the hole concentration (p), and not simply the oxygen content. The changes in \Delta \omega with p imply that the superconducting gap (\Delta_{max}) decreases monotonically with increasing hole concentration in the overdoped regime, and \Delta \omega falls to zero in the underdoped regime. The linewidth renormalization \Delta 2\gamma is negative in the underdoped regime, crossing over at optimal doping to a positive value in the overdoped state.Comment: 18 pages; 5 figures; submitted to Phys. Rev. B Oct. 24, 2002 (BX8292
    corecore