
1

Human-Inspired Neurorobotic System
for Classifying Surface Textures by Touch

Ken E. Friedl1,4, Aaron R. Voelker2,4, Angelika Peer3, and Chris Eliasmith2

Abstract—Giving robots the ability to classify surface textures
requires appropriate sensors and algorithms. Inspired by the
biology of human tactile perception, we implement a neurorobotic
texture classifier with a recurrent spiking neural network, using
a novel semi-supervised approach for classifying dynamic stimuli.
Input to the network is supplied by accelerometers mounted on
a robotic arm. The sensor data is encoded by a heterogeneous
population of neurons, modeled to match the spiking activity of
mechanoreceptor cells. This activity is convolved by a hidden
layer using bandpass filters to extract nonlinear frequency
information from the spike trains. The resulting high-dimensional
feature representation is then continuously classified using a
neurally implemented support vector machine. We demonstrate
that our system classifies 18 metal surface textures scanned in two
opposite directions at a constant velocity. We also demonstrate
that our approach significantly improves upon a baseline model
that does not use the described feature extraction. This method
can be performed in real-time using neuromorphic hardware,
and can be extended to other applications that process dynamic
stimuli online.

Index Terms—neurorobotics, biologically-inspired robots, force
and tactile sensing

I. INTRODUCTION

HUMANS are remarkably adept at perceiving the en-
vironment using their sense of touch. By moving the

fingertip across a surface, vibrations give rise to perceptual
qualities such as roughness [1], stickiness, and slipperiness
[2], [3]. Thus, structural details smaller than 1 µm in different
quality grades of silk, paper, and grind metal surfaces can be
differentiated [4]. Our goal is to draw inspiration from nature
to give robots the ability to classify surface textures in real-
time. This ability can be deployed within systems that need
to classify tactile stimuli, such as those employed to automate
quality control of textured surfaces.

Dynamic robotic systems for tactile surface sensing have
been developed using various technologies [5]. In this context,

Manuscript received: August, 31, 2015; Revised November, 18, 2015;
Accepted December, 22, 2015.

This paper was recommended for publication by Wan Kyun Chung upon
evaluation of the Associate Editor and Reviewers’ comments.

1Chair of Automatic Control Engineering, Technische Universität
München, D-80333 Munich, Germany, Email: friedl@tum.de

2Centre for Theoretical Neuroscience, University of Waterloo, Waterloo,
ON, Canada N2L 3G1, Email: arvoelke@uwaterloo.ca

3Bristol Robotics Laboratory, University of the West of England, T Block,
Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom,
Email: angelika.peer@brl.ac.uk

4Aaron R. Voelker and Ken E. Friedl contributed equally to this work. The
idea for this work, theoretical background for the system and experimental
setup was done by Ken E. Friedl. The code, architecture, and theory were
developed by Aaron R. Voelker.

Digital Object Identifier xxxxxxxxxxxxxxxxxxx

tactile implies the sensors physically touch the textured sur-
face. Dynamic refers to robotic setups that perform exploratory
movements across the surface to accumulate sensor data.
Accelerometers have been used as dynamic vibration sensors
for texture discrimination in [6], [7] and [8]. By using only
the signal variance of two spatially separated vibration sensors,
four different textures could be differentiated in [9]. In addition
to variance, Giguere and Dudek [7] utilized mean, skewness,
kurtosis and some higher order moments of one accelerometer
to differentiate between ten fine and coarse textures. Other
studies have used multiple exploratory movements to boost
classification accuracy. For instance, Sinapov et al. [8] used
five exploratory movements with varying direction and speed,
and analyzed the spectrotemporal features to classify twenty
naturalistic fine textures with 80% accuracy. Another study
kept executing exploratory movements until at least 80% of
the movements indicated a specific texture [10].

However, only a few groups have developed classifiers
using spiking neural networks. A closed perception-action loop
was built to classify Braille characters [11], by supplying
pressure sensor array data to leaky integrate-and-fire (LIF)
neurons, and then using a naive Bayes classifier to control the
scanning velocity. Another approach classified ten naturalistic
textures with 97% accuracy [12], by simulating an Izhikevich
neuron in response to an array of four piezoresistive sensors,
and analyzing the precise spike timing using spike distance
metrics. However, these metrics require offline processing of
the entire time window, and therefore cannot be implemented
in real-time.

Related work has also used Bayesian exploration to
optimize the information supporting various textural
properties [13]. This model is capable of using a number of
exploratory movements to classify 117 textures with a 95.4%
success rate. However, the system requires an offline phase to
reduce the input signal to a number of scalar values, making
it unsuitable for real-time applications. This reduction could
also discard valuable information from the input signal, since
it is manually crafted using a finite set of properties motivated
by psychophysical studies.

In contrast, we find it possible to automatically discover the
most salient features from a high-dimensional representation
of the input stimulus, and classify these features online. This
is challenging since the relationship between a rapidly time-
varying tactile stimulus and its resulting perceptual qualities
is highly nonlinear [4]. To make this problem tractable, we
translate our biological understanding of tactile perception into
an artificial network of spiking neurons, and then train the
desired function. Our approach is implemented entirely within

2

a spiking neural network that can be simulated on low-power
neuromorphic hardware.

When fingers move across a texture, tiny hills and valleys
along its surface rapidly excite various types of static and dy-
namic mechanoreceptors [4]. Biomechanical processes within
these cells convert the physical forces applied by the stimulus
into spike trains. We adapt a mechanoreceptor model by Kim
et al. [14] to simulate this process in a population of spiking
neurons. The nervous system routes the mechanoreceptor
responses through the spinal cord where they are processed
by cuneate neurons [15], which function as feature extractors
across this spiking activity [16]. This motivates the inclusion
of a hidden layer in the model to extract a high-dimensional
feature representation. We have designed this layer to en-
code frequency bands of the stimulus, since frequency is
an important factor in psychophysical experiments involving
the differentiation of textures [1]. The population of cuneate
neurons project these features to somatosensory cortex, where
an abstract percept of the texture is thought to be formed [16].
Our model learns the mapping from features to textures using
a support vector machine (SVM). These learned weights are
embedded within the connection to a recurrent output layer.
To summarize, the network encodes the physical stimulus into
spiking activity, maps this activity to extract salient features,
and finally decodes the resulting spikes to obtain an online
classification.

To implement this model, we employ the Neural Engi-
neering Framework (NEF), which provides a method for
mapping functions to a biologically plausible spiking neural
network [17]. These networks can be efficiently simulated
on neuromorphic hardware such as SpiNNaker [18], resulting
in significant energy savings [19]. Simulations are also more
efficient than all-to-all connected networks due to the use of
factored weight matrices [20], and are generally robust to noise
and physical variability due to heterogeneity [21].

Our method uses the NEF to classify surface textures
scanned with a robotic setup. We report performance on a
set of 18 metal surface textures. This establishes a novel
biologically-inspired system that can be simulated in real-time
using neuromorphic hardware.

II. MATERIALS & METHODS

A. Neural Network Architecture

1) Neural Engineering Framework: Our approach uses the
NEF, which consists of three principles that enable the trans-
lation of a high-level mathematical description of a system
into a biologically plausible model of spiking neurons and
connection weight matrices [17].

The first principle provides a way of representing a time-
varying vector x(t) in the spiking activity of a population of
neurons. In particular, the spiking activity ai at time t for the
ith neuron in the population is given by:

ai(t) = G[αiei · (x ∗ hi)(t) + βi], (1)

where · denotes a dot product and ∗ convolution. Here, each
neuron i has an encoding vector ei which can be understood
as the vector for which the neuron will fire most strongly. The

input current to the neural nonlinearity G[·] at time t is a linear
function of x(t), with coefficients given by ei, scaled by a gain
αi > 0, plus a bias current βi. In addition, there is a causal
linear filter1 hi(t) that models the post-synaptic current (PSC)
resulting from the arrival of a spike at the synapse of the ith

neuron. We note that this principle decouples the number of
neurons that represent x(t), from the dimensionality of this
vector.

The neural nonlinearity G[·], may in theory be any model
that converts a time-series of current into a spike train. This
work simulates both adaptive and non-adaptive leaky integrate-
and-fire (LIF) neurons to generate spikes, since they offer an
ideal trade-off between efficiency and biological plausibility
[17]. LIF neurons operate by simulating a resistor-capacitor
circuit that maps on to membrane properties of neurons. If
the membrane potential passes a threshold, the neuron emits
a spike, resets for an absolute refractory period (2 ms here),
and begins to respond to the input voltage again. Similarly,
adaptation was added to the LIF model by reducing the input
current by an adaptive term that increases every time the
neuron spikes, and decays over time [22].

To recover the vector from the population’s resulting acti-
vity, each neuron has a decoding vector di, such that

x̂(t) =
∑
i

(ai(t) + µ)di, (2)

where µ ∼ N (0, σ2) models Gaussian noise in the neural
activity. These decoding vectors are found by optimizing the
root mean squared error (RMSE) of x̂(t) − x(t) using a
standard regularized least squares solver.

The second principle observes that to compute the identity
function between two populations of neurons, the connection
weights W can be factored into a matrix of encoders e for
the post-synaptic neurons and the decoders d from the pre-
synaptic neurons.

W = edT (3)

Due to the neural nonlinearity G[·], the same equation can
also be used to approximate any nonlinear transformation,
by modifying (2) to decode f̂(x(t)) =

∑
i(ai(t) + µ)df

i ,
where df

i are the optimal linear decoders for approximating
the function f , by minimizing the RMSE of f̂(x(t))−f(x(t)).

The third principle provides a method of mapping a control-
theoretic description of a dynamical system into a recurrently
connected population. For the purposes of this work, we are
mainly interested in the simple case of a leaky integrator, i.e.
lowpass filter with a desired time constant τ0:

ẋ(t) =
1

τ0
(u(t)− x(t)). (4)

By using the standard lowpass PSC filter with time constant
τ , it can be shown that x(t) obeys (4) when

A′ = 1− τ

τ0
, B′ =

τ

τ0
, (5)

1This is typically the standard exponential model hi(t) = (1/τ)e−t/τ ,
which performs lowpass filtering with time constant τ . This work also utilizes
highpass and bandpass filters that differ per synapse.

3

where A′ is a scalar multiplying the recurrent decoding
vectors, and B′ is a scalar multiplying the input u(t) [17].

The neural architecture of our system uses these principles
of the NEF at each of its three layers: a population of
mechanoreceptors, a hidden layer of features, and a recurrently
connected output layer (see Fig. 1). We proceed by describing
each of these layers individually.

2) Mechanoreceptor Population: The human sense of touch
uses free nerve endings and specialized mechanoreceptors to
sense vibrations on the skin. The latter are composed of two
types: 1) slowly adapting type cells which are sensitive to
static stimuli; 2) the so-called rapidly adapting type cells. The
slowly adapting cells include Merkel (SA1, static pressure) and
Ruffini cells (SA2, skin stretch). The rapidly adapting cells are
sensitive to transient events such as vibration. These include
Meisser (RA, vibration in the range of 1 to about 60 Hz) and
Pacinian cells (PC, vibrations in the range of 30 to about
700 Hz) [23]. When the finger moves across a surface texture,
the skin is excited by vibration patterns influenced by macro-
and microscopic topography of the surface in contact. These
cells transform the physical stimulus into spiking patterns.

To mimic this biological representation, our model encodes
the vibrations recorded from multiple accelerometers into the
spiking activity of a heterogeneous population of mechano-
receptor neuron models. Since SA2 cells do not contribute
directly to fine textural percepts [4], we only consider PC,
RA, and SA1 type cells for our model.

The mechanoreceptor model by Kim et al. [14] has been
shown to accurately reproduce the spike trains of RA and
SA1 type cells on a variety of stimuli. Following this model,
we take the acceleration u(t), and its two derivatives u̇(t),
ü(t), and separate each of them into positive and negative
rectified parts resulting in 6 signals. Since acceleration is
directly proportional to the net force, we interpret u(t) as the
force applied to the fingertip. Then u̇(t) and ü(t) are the first-
and second-order changes in force, respectively. As shown in
Fig. 1, the rectified signals form 6 inputs, which are weighted
and summed to form the current to an adaptive LIF neuron.

This is equivalent to the neural representation of a 6-
dimensional vector x(t) in the NEF using (1). Each encoding
vector ei corresponds to the 6 weights that depend on the cell
type of the ith neuron. Different weights then reproduce the
spiking characteristics of different types of mechanoreceptors.
For the PSC model required by the NEF, we use a lowpass
filter with time constant τ = 1 ms on all mechanoreceptors.
We found experimentally that this constant works well to
balance the need for smoothing (large τ) with the need to
maintain high frequencies in the signal (small τ). To simplify
implementation, differentiation is performed by combining this
PSC filter with a highpass filter with the same time constant
(Laplace transform τs). Our model differs from the original
model only by the use of an adaptive LIF model instead of
the Mihalas-Niebur model, and by omitting a saturation filter
applied to the current. The adaptive LIF model is used in place
of G[·] to obtain a neural model that is simpler than Mihalas-
Niebur while still supporting adaptation. We then use (1) to
simulate the spiking activity of each neuron in response to the
stimulus.

Mechanoreceptor Neuron

Sensor
data

Differen-
tiation

Rectification

Σ

Σ

u(t)

u(t) u̇(t)

ü(t)

Weighted
sum

Weighted
sum

Adaptive leaky
integrate-and-
fire (aLIF)

Spike train

PC

RA

SA1

Sensor
data

Mechano-
receptors

Hidden
layer

Recurrent
layer

Score
vector

Hidden Neuron

Bandpass filter

Leaky integrate-
and-fire (LIF)

Fig. 1. Architecture of the surface texture classifier. Data from three sensors
are encoded in the spiking activity of mechanoreceptor neurons. A hidden
layer extracts nonlinear features of these spike trains in the frequency domain
by convolution with bandpass filters. A recurrently connected output (feedback
arrows omitted) represents the score for each class, smoothed over time. This
score vector is linearly decoded from the recurrent layer to find the texture
with the largest score. Connection weights and neural parameters are given
by the principles of the NEF.

Rather than fitting the parameters of the neurons directly
to individual model neurons as in the original model, we
uniformly randomize parameters αi, βi, and ei of 40,000
neurons (this number was chosen to sufficiently sample the
space of parameters), and then select those with the highest
Γ-factor (GF) [24] to canonical PC/RA/SA1 models on a
standard test stimulus2. The GF compares the number of
coincidental spikes within a ±2 ms window to the expected
value generated by a Poisson process with the same firing
rate: 1 implies a perfect match; 0 a Poisson process; and −1
indicates anti-correlation. We use this particular measure to be
consistent with the prior analysis of the original model. The
pruned population of mechanoreceptors contains 20/300/200

2Canonical models and test data were obtained by email correspondence
with the authors of [14]. Although PC type cells were not evaluated by the
original study, their model included sample PC parameters.

4

neurons (520 total) of type PC/RA/SA1, respectively, to match
the distribution within a 2 cm2 surface of contact [23]. The GF
of selected neurons range from 0.19 to 0.99 with mean 0.49
across all three types. This is promising considering Kim et
al. [14] found the mean GF between individually fit models
and their canonical RA/SA1 models to be approximately 0.3.

The resulting distribution of encoders effectively reflects the
sensitivity of each cell to various characteristics of the sensory
input. By allowing them to vary randomly, the information
content of the population is increased [21]. In particular, the
network can further process the 6-dimensional representation
using (2) while being robust to noise. This need to exploit
individual variability is consistent with the conclusion made
by Kim et al. [14] that heterogeneity in afferent fibers matters
when conveying precise timing information about the tactile
response.

The fingertip has multiple points of contact while scanning
a surface, allowing it to pick up spatial features of the stimulus
[4]. The above 6-dimensional encoding is repeated 3 times (for
each sensor in our robotic setup) to form an 18-dimensional
representation, where the encoding vector for each neuron
is tuned to different combinations of dimensions from the
different sensors. This further improves robustness to noise
by exploiting multiple correlated sources of information. The
distribution of encoders could also be controlled to match
known spatial characteristics of each cell, but for simplicity
we set all encoders to be uniformly distributed across the 3
sensor signals.

3) Hidden Layer: Feature Extraction in the Frequency
Domain: Given the spiking activity of the population of
mechanoreceptors, we now extract a high-dimensional repre-
sentation in a hidden layer of neurons, to capture general
features of the stimulus.

The 18-dimensional input representation (6 dimensions × 3
sensors) is recovered from the spiking activity of the mecha-
noreceptor population, by solving (2) for a 520× 18 decoder
matrix d (18 input dimensions for each of the 520 mechano-
receptor neurons) using regularized least squares optimization.
The parameters of 7,200 LIF neurons (this number was chosen
to sufficiently sample the space of neural parameters per
dimension), one for each feature in the hidden layer, are
randomly generated, with encoders constrained to each of the
possible 18 dimensions. This forms a sparse 7,200×18 encoder
matrix e such that (3) gives the connection weight matrix
from the mechanoreceptor population to the hidden layer. The
hidden layer then represents the same 18-dimensional input
at the current point in time, by having learned the optimal
decoding from the spikes of the adaptive mechanoreceptor
layer.

Motivated by the importance of stimulus frequency in psy-
chophysical experiments involving texture discrimination [1],
our aim is to extract features that encode information about
the frequency of the current stimulus. The weight matrix
transforms the activity independently of time, and is therefore
insufficient to extract information about its frequency content.
Thus, we provide the ith neuron in the hidden layer with its
own PSC filter hi(t), modeled as a 2nd order bandpass filter

with Laplace transform

Hi(s) =
1

1
ω2

i

s2 + 1
ωiQi

s+ 1
(6)

where ωi is the peak frequency in radians per second, and
Qi is inversely proportional to the bandwidth. This filter was
chosen because it is the linear filter of lowest order that is
capable of isolating particular bands of frequencies.

Each ωi is chosen randomly without examining the input
data. Since differentiation is a form of highpass filtering, we
expect the higher derivatives to represent higher frequency
bands more accurately. Thus ωi is chosen between 0 − 250,
125−375, or 250−500 Hz, depending on whether the neuron
is encoding a dimension from u(t), u̇(t), or ü(t), respecti-
vely. Frequencies above 500 Hz are unnecessary due to the
refractory rates of neurons (2 ms). We found that randomizing
Qi between 2− 50, regardless of dimension, lead to the best
results.

The spiking activity of each hidden neuron encodes a
recovered input dimension convolved with a random bandpass
filter (see Fig. 1). Decoding the square of a particular filter
from this population then yields the power of that filter. More
generally, any nonlinear functions of the frequency bands that
are supported by the neural basis functions3 can be used as a
feature – a fact readily exploited in the following subsection.

4) Recurrent Layer: Classification of Features in a Neural
Support Vector Machine: The final layer of our model is a
recurrent output layer, which classifies the spiking activity of
the hidden layer into one of k possible surface textures. The
output layer is a population of 900 LIF neurons that represent
a k-dimensional vector encoding a score for each class. The
value of 900 was chosen to be large enough to accurately
decode all k dimensions using (2).

Since the activity of the hidden layer is noisy and high-
dimensional, we use scikit-learn (v0.16.1) to train a one-vs-all
linear support vector machine (SVM), from the spikes of the
hidden layer, without being prone to overfitting [25]. Since
each of the k classifiers computes a dot product, together they
form a 7,200× k decoder matrix d (one decoding vector for
each neuron in the hidden layer) equivalent to solving (2) using
the SVM maximum margin objective.

A 900× k encoder matrix e (one encoding vector for each
neuron in the output layer) is randomly generated, and (3)
provides the weight matrix to the output layer. To determine
the resulting classification, we again solve for a 900 × k
decoder matrix d, so that (2) produces an estimate of the k-
dimensional score vector. The index of the maximum value
yields the classification for the given point in time.

The population is recurrently connected to itself using (5)
to integrate the scores with a leak term. This smooths the
classification over time, with different recurrent lowpass time
constants (τ0) altering the rate of adaptation to new stimuli
or the forgetting of old evidence. We use τ0 = 50 ms and
τ = 5 ms for the output layer. The value of τ matches the
default synaptic time-constant in our simulation software,

3Eliasmith and Anderson [17] characterize this in detail using singular value
decomposition on the activity matrix, and show that squaring is accurately
supported by LIF tuning curves.

5

A

A

Accelero-
meters

Seesaw

Sensing tips

Textures

Plastic
base

Fig. 2. Robotic setup using a 6 degree-of-freedom (6DoF) robotic arm and
3 sensors. (A) Triangular arrangement of the 3 sensing tips.

while τ0 was found to help persist correct classifications over
time intervals with insufficient evidence in the signal.

It is important to note that although the SVM itself is linear,
its features are not, due to the neural nonlinearities in the
hidden layer. This is mathematically equivalent to using a
kernel function given by the LIF tuning curves. Thus, the
SVM nonlinearly separates the encoded frequency bands using
randomly generated neural basis functions.

5) Nengo: All experiments were run using Nengo (v2.0.1),
a Python implementation of the NEF [20]. Neurons were
configured with default parameters, and the parameters from
(1) were randomly sampled across the default ranges. Nengo
automatically learned the decoders and connection weights
offline, by optimizing the RMSE of (2) given randomly
sampled x(t) from the unit hypersphere.

The simulations of (1) used a timestep of 0.5 ms (2 kHz).
The accelerometer data u(t) was streamed as input to the
neural network. The spike train of the output population was
read to obtain a classification at each timestep.

B. Robotic Setup

The robotic setup responsible for obtaining the sensor data
consists of acceleration sensors mounted on a robotic arm and
a sheet of textures (see Fig. 2).

1) Sensors: Three piezoceramic acceleration sensors, two
one-axis PCB Piezoelectronics C65 and one three-axis 356A32

Horizontal milling (H)Face grinding (F)

Lathe milling (L) Face milling (S)

Flat lapping (P) Grinding (G)

0.55

1

1.6

2.5

4

8

2.5

4

8

2.5

4

8

0.55

1

1.6

3

6

10

Fig. 3. Detailed photographs of surface textures used to test the system. This
set was manufactured using 6 different metal surface finishing methods, with
3 roughnesses per finishing method, for a total of 18 distinct textures. The
mean roughness depth (Rz) is indicated to the right of each texture.

with only 1 DoF in use, are arranged in 120° triangular fashion
with 5 mm spacing (see Fig. 2A). This arrangement is used
to give our system the ability to pick up spatial features of
the stimulus. Contact to the textured surfaces is achieved by
mounting each sensor on a brass beam that is loosely supported
in a brass tube. On the contact point to the texture, a copper
tip is soldered to the beam to achieve a relatively soft contact
preventing damage to the texture. A stable and vibrationless
contact with 30 g load is achieved by a seesaw that is equipped
with two brass weights. Sensors are electrically insulated from
metal structures of the robotic arm and from one another.
The analog signals are conditioned and amplified using PCB
Piezoelectronics 482C Series Sensor signal conditioner. These
signals are digitally sampled at 10 kHz using a DAQ card,
National Instruments NI USB-6218, that is connected via
USB to a computer running Windows 7 and controlled via
MATLAB 2014a.

2) Robotic Arm: The robotic arm is a 6 degree-of-freedom
manipulator, Mitsubishi Electric MELFA RV-2F-D. A MELFA
CR750-D controller receives position commands in task space
provided through UDP with a custom C++ program to main-
tain constant velocity.

3) Textures: The data set consists of 18 textures manu-
factured by the following 6 metal surface finishing methods:
face grinding (F), horizontal milling (H), lathe milling (L),
face milling (S), flat lapping (P), and grinding (G), with
three roughnesses per finishing method (see Fig. 3). These

6

textures were selected to include a broad range of geometric
dimensions of fine texture detail, with mean roughness depth
(Rz) ranging from extremely fine (0.55 µm) to relatively coarse
(10 µm). The sheet of textures was mechanically insulated
from the table to which the robot was fixed and then glued to
a plastic base (100 mm × 150 mm × 20 mm).

4) Experimental Protocol: Before each data acquisition
session, the load on the sensors was measured using an
electronic scale. Prior to placing the textures, the sensing
triangle was lowered to the surface of the scale using the
robotic arm. To ensure constant pressure, the two brass weights
were moved back and forth on the seesaw until a stable load of
30 g was obtained. The scale was then replaced by the plastic
base holding the textures. Air was supplied beneath the plastic
base at 30 psi to suspend the textures above a thin film of air.
The center of the sensing triangle was set to start vertically
centered at 11 mm from the top of the texture, and 6 mm from
the side.

Each texture was scanned parallel to its longest edge, at a
constant velocity of 0.7 mm/s for 120 s. After moving 10 mm,
the robot would stop for 0.5 s (while the recording continues)
and then repeat in the opposite direction. Although different
scanning velocities were not considered by this study, our
current experimental setup and protocol is robust and generally
applicable.

To determine the scanning velocity, we measured the velo-
city range of three human subjects (1 female aged 25, 2 males
aged 26 and 28) during lateral movements along the longest
edge of each texture, which yielded a range of velocities
between 0.7 mm/s and 23 mm/s. This was accomplished with
a tracking system (Qualisys), by attaching an infrared marker
to each participant’s index finger during an identification task
involving three of the textures. We chose the lowest velocity
of 0.7 mm/s, since this was observed to minimize background
vibrations from the robotic arm.

All sensor data was offset and scaled so that 99% fell within
the interval [−1, 1] with mean 0. To cross-validate the model,
we randomly split the data into four folds, and validated
the system four times (each time using 90 s of training data
and 30 s of testing data per texture). Furthermore, each test
signal was partitioned into thirty disjoint 1 s segments for
classification (for a total of 120 examples per texture).

III. RESULTS

To evaluate the system, the trained network was tested on
each 1 s of test data. The 18-dimensional score vector was
decoded from the spiking activity of the output population,
lowpass filtered with default time constant (5 ms), and sampled
every 1 ms (see Fig. 4). A total score for each texture was
obtained by summing together the individual score vectors
across the test segment. The classification for each test seg-
ment was taken to be the texture with the highest total score.
These results are broken down by texture in Table I, averaged
across each test segment from all four folds, with an overall
accuracy of 65.6%. The most common classification is the
correct texture, in all cases.

By analyzing the trained network, we may succinctly cha-
racterize what each classifier is sensitive to in the frequency

S2.5
L8
S8
S4

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

5

10

15

M
ec

h
an

or
ec

ep
to

rs
S
en

so
r

D
at

a

0.8

0

-0.8

Sensor 1

Sensor 2

Sensor 3

D
ec

o
d
ed

 S
co

re

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

0.8

0

-0.8

0.8

0

-0.8

0.2 0.3 0.4
Time (s)

Fig. 4. Network activity on a 1 second test segment from the S2.5 recording.
(Top) Normalized accelerometer data from the three sensors, across an interval
of 0.2 to 0.4 s. (Middle) Spike raster of 15 (out of 520) randomly selected
mechanoreceptor neurons, over this same time interval. (Bottom) Top 4 scores
across the entire 1 s segment, obtained by decoding the output population. The
network correctly classifies the texture as S2.5 at every timestep after the first
10ms.

domain. We visualize this to indicate which bandpass parame-
ters are most important for classifying all textures (see Fig. 5
top), and which frequencies are most important for classifying
a specific texture (see Fig. 5 bottom). The top figure reveals
that narrow filters (higher values of Q) tend to carry more
weight, while frequencies in the range of 50−100, 240−260,
and 400 − 500 Hz are less useful. The bottom figure shows
for example that neurons encoding the negatively rectified
dimension of u̇(t) will provide the most evidence for L2.5
when this dimension has power at 200 Hz.

We also compared our approach to a simpler model, by
training and evaluating the same model without a hidden layer.
This baseline model was prepared and validated under the
same conditions, except the SVM used the spiking activity
of the mechanoreceptor population as its features, rather than

7

TABLE I
CONFUSION MATRIX FOR 1 SECOND TEST SEGMENTS (%)

Predicted
F.55 F1 F1.6 H2.5 H4 H8 L2.5 L4 L8 S2.5 S4 S8 P.55 P1 P1.6 G3 G6 G10

A
ct

ua
l

F.55 96.7 0.8 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.8
F1 14.2 55.8 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 9.2 0.0 4.2 1.7 5.8

F1.6 4.2 0.0 80.0 0.0 0.0 0.0 0.8 2.5 1.7 0.0 1.7 0.0 0.0 7.5 0.0 0.8 0.0 0.8
H2.5 0.8 0.0 1.7 40.8 0.0 5.8 0.0 0.0 0.8 5.0 33.3 1.7 8.3 0.0 0.8 0.0 0.0 0.8
H4 0.0 0.0 0.0 0.0 99.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
H8 0.0 0.0 0.0 0.0 1.7 68.3 0.0 0.0 1.7 1.7 9.2 1.7 10.0 1.7 0.0 0.0 0.8 3.3

L2.5 4.2 0.0 4.2 0.0 0.0 0.0 73.3 0.8 7.5 6.7 2.5 0.0 0.0 0.0 0.0 0.8 0.0 0.0
L4 0.0 0.0 10.0 0.0 0.0 0.0 2.5 60.0 0.0 0.0 25.0 0.8 0.8 0.0 0.8 0.0 0.0 0.0
L8 3.3 0.0 10.8 0.0 0.0 0.8 16.7 8.3 49.2 0.0 1.7 0.8 3.3 0.8 0.0 2.5 0.0 1.7

S2.5 0.0 0.0 0.0 0.8 0.0 10.8 5.0 0.0 2.5 67.5 0.8 0.0 5.0 0.0 0.0 6.7 0.8 0.0
S4 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1.7 0.8 1.7 92.5 0.0 0.0 0.8 1.7 0.0 0.0 0.0
S8 0.0 0.8 0.8 0.8 0.0 9.2 1.7 0.0 0.8 14.2 17.5 40.0 0.8 1.7 6.7 0.0 0.0 5.0

P.55 0.8 0.0 0.8 0.8 0.0 7.5 0.0 0.0 0.8 0.0 2.5 0.0 75.0 5.8 0.0 4.2 0.0 1.7
P1 0.8 0.0 1.7 0.0 0.0 5.0 0.0 0.8 0.0 0.0 2.5 0.0 10.8 55.8 0.0 6.7 0.8 15.0

P1.6 0.0 0.0 0.0 0.8 0.0 0.8 0.0 0.8 0.8 0.0 0.8 0.0 0.0 0.0 95.8 0.0 0.0 0.0
G3 10.0 0.0 2.5 0.0 0.0 2.5 0.0 0.0 0.0 17.5 0.0 0.0 4.2 7.5 1.7 41.7 7.5 5.0
G6 10.0 6.7 2.5 0.0 0.8 4.2 0.8 0.0 0.0 1.7 3.3 0.0 1.7 5.8 2.5 25.8 29.2 5.0
G10 0.0 0.0 10.0 0.0 1.7 0.8 1.7 0.0 2.5 0.0 3.3 0.0 0.8 18.3 0.0 0.8 0.0 60.0

the spiking activity from the hidden layer. Cross-validation
accuracy decreased to 17.8%, averaged across each test seg-
ment from all four folds. We remark that the baseline still
captures temporal information through its various lowpass
filters (in the output layer and PSCs) and highpass filters (in
the mechanoreceptor cells), yet it is no longer able to isolate
particular bands of frequencies. Therefore, it is the addition of
bandpass filters in the hidden layer that enable the network to
accurately separate the feature space by texture.

IV. DISCUSSION & FUTURE WORK

We trained a three-layer network of spiking neurons to
classify a set of 18 textures. A biologically plausible model of
mechanoreceptors was adapted to encode the input vibrations.
Psychophysical experiments and the role of cuneate neurons
motivated a hidden layer that extracts frequency information.
Lastly, an SVM determined the connection weights into a
recurrently connected population. To our knowledge this is
a novel semi-supervised approach for classifying dynamic
stimuli using a spiking neural network.

A key advantage of our approach is that the network
can be simulated in real-time using low-power neuromorphic
hardware. At the same time, the NEF endows our model with
benefits such as robustness to noise and parallel computation.
Similarly, the system immediately provides classifications on-
line, and performs well with brief inputs lasting only 1 s. These
advantages make our method generally suitable for use in
robotic applications, thus advancing the state of the art for
texture classification.

A comparison with a baseline model revealed that perfor-
mance was a consequence of the hidden layer. The first two
layers of the network are unsupervised, and so the activity of
the hidden layer represents general features that can in theory
be reused for other applications. We intend to demonstrate
this by extending our system to differentiate between textures,

by interpreting the feature vector as a high-dimensional des-
cription of a texture. We also suspect that other tasks which
process tactile stimuli can benefit by using this same vector.

Likewise, features of the input stimulus are learned and
classified using general techniques from signal processing and
machine learning. The methodology that we have described
here need not be limited to the use of mechanoreceptor
models and bandpass filters. While these tools were needed to
appropriately constrain our model, other applications involving
the processing of dynamic stimuli (e.g. visual or auditory) may
readily place different constraints on how each layer encodes
and filters information. This in turn may allow the architecture
to be modified and redeployed within other domains.

The test results indicate how often each texture is confused
with another. In general, it should be possible to design a
simple psychophysical experiment to compare our system to
human performance. However, our system is at a fundamental
disadvantage since it does not alter its position or pressure
to gather more evidence when unsure of its prediction. We
are considering future extensions that solve this issue with
a closed-loop system that can actively control its motor mo-
vements, with a range of velocities, based on feedback from
the accumulated features.

ACKNOWLEDGMENT

This project was supported by the European Commission
seventh framework programme under grant 610902, CFI, OIT,
Canada Research Chairs NSERC Discovery grant 261453,
ONR grant N000141310419, AFOSR grant FA8655-13-1-
3084, and NSERC CGS-M. We would like to thank the Centre
for Theoretical Neuroscience of the University of Waterloo for
providing travel grants, Ménélik Vero for gathering the training
and test data, Alexander Pekarovskiy and Michaela Semmler
for valuable comments, Mitsubishi Electric Corporation for
donating the RV-2F-D robotic arm, and Rintaro Haraguchi for
his assistance in programming the C++ interface.

8

Q
-V

al
ue

50

40

30

20

10

0
0 100 200 300 400 500

Frequency (Hz)

Frequency (Hz)

Face grinding (F), 2.5Rz

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

Lathe milling (L), 2.5Rz

0 100 200 300 400 500

u(t) u̇(t) ü(t)

Fig. 5. Visualizing the network in the frequency domain. Frequencies are
0 − 250, 125 − 375, or 250 − 500Hz, depending on whether each hidden
neuron is encoding a dimension from u(t) (blue), u̇(t) (green), or ü(t) (red).
(Top) Distribution of bandpass filter parameters from (6), weighted by the `2-
norm of SVM coefficients, and smoothed by a kernel density estimate [26].
The smallest weights are omitted to reduce visual clutter. Histograms along the
sides flatten the distribution across their corresponding axes. (Bottom) Power
of bandpass filters per texture (only two shown), weighted by their squared
SVM coefficients (unitless). Negatively rectified dimensions are flipped about
the x-axis for visualization.

REFERENCES

[1] B. Unger, R. Klatzky, and R. Hollis, “The physical basis of perceived
roughness in virtual sinusoidal textures,” Haptics, IEEE Transactions
on, vol. 6, no. 4, pp. 496–505, 2013.

[2] R. L. Klatzky, D. Pawluk, and A. Peer, “Haptic perception of material
properties and implications for applications,” Proceedings of the IEEE,
vol. 101, no. 9, pp. 2081–2092, 2013.

[3] M. Holliins, R. Faldowski, S. Rao, and F. Young, “Perceptual dimen-
sions of tactile surface texture: A multidimensional scaling analysis,”
Perception & psychophysics, vol. 54, no. 6, pp. 697–705, 1993.

[4] A. I. Weber, H. P. Saal, J. D. Lieber, J.-W. Cheng, L. R. Manfredi, J. F.
Dammann, and S. J. Bensmaia, “Spatial and temporal codes mediate
the tactile perception of natural textures,” Proceedings of the National
Academy of Sciences, vol. 110, no. 42, pp. 17 107–17 112, 2013.

[5] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing-from
humans to humanoids,” Robotics, IEEE Transactions on, vol. 26, no. 1,
pp. 1–20, 2010.

[6] R. D. Howe and M. R. Cutkosky, “Dynamic tactile sensing: Perception
of fine surface features with stress rate sensing,” Robotics and Automa-
tion, IEEE Transactions on, vol. 9, no. 2, pp. 140–151, 1993.

[7] P. Giguere and G. Dudek, “A simple tactile probe for surface identifica-
tion by mobile robots,” Robotics, IEEE Transactions on, vol. 27, no. 3,
pp. 534–544, 2011.

[8] J. Sinapov, V. Sukhoy, R. Sahai, and A. Stoytchev, “Vibrotactile recog-
nition and categorization of surfaces by a humanoid robot,” Robotics,
IEEE Transactions on, vol. 27, no. 3, pp. 488–497, 2011.

[9] Y. Tada, K. Hosoda, and M. Asada, “Sensing ability of anthropomorphic
fingertip with multi-modal sensors,” in IEEE International Conference
on Intelligent Robots and Systems. Citeseer, 2004, pp. 1005–1012.

[10] N. Jamali and C. Sammut, “Majority voting: material classification by
tactile sensing using surface texture,” Robotics, IEEE Transactions on,
vol. 27, no. 3, pp. 508–521, 2011.

[11] L. Bologna, J. Pinoteau, J. Passot, J. Garrido, J. Vogel, E. R. Vidal,
and A. Arleo, “A closed-loop neurobotic system for fine touch sensing,”
Journal of neural engineering, vol. 10, no. 4, p. 046019, 2013.

[12] U. B. Rongala, A. Mazzoni, and C. M. Oddo, “Neuromorphic artificial
touch for categorization of naturalistic textures.” IEEE transactions on
neural networks and learning systems, 2015.

[13] J. A. Fishel and G. E. Loeb, “Bayesian exploration for intelligent
identification of textures,” Frontiers in neurorobotics, vol. 6, 2012.

[14] S. S. Kim, S. Mihalas, A. Russell, Y. Dong, and S. J. Bensmaia, “Does
afferent heterogeneity matter in conveying tactile feedback through
peripheral nerve stimulation?” Neural Systems and Rehabilitation Engi-
neering, IEEE Transactions on, vol. 19, no. 5, pp. 514–520, 2011.

[15] H. P. Saal and S. J. Bensmaia, “Touch is a team effort: interplay of
submodalities in cutaneous sensibility,” Trends in neurosciences, vol. 37,
no. 12, pp. 689–697, 2014.

[16] H. Jörntell, F. Bengtsson, P. Geborek, A. Spanne, A. V. Terekhov, and
V. Hayward, “Segregation of tactile input features in neurons of the
cuneate nucleus,” Neuron, vol. 83, no. 6, pp. 1444–1452, 2014.

[17] C. Eliasmith and C. H. Anderson, Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2003.

[18] A. Mundy, J. Knight, T. C. Stewart, and S. Furber, “An efficient
spinnaker implementation of the neural engineering framework,” IJCNN,
2015.

[19] J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromor-
phic hardware systems,” Frontiers in neuroscience, vol. 7, 2013.

[20] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, 2013.

[21] E. Hunsberger, M. Scott, and C. Eliasmith, “The competing benefits of
noise and heterogeneity in neural coding,” Neural Computation, vol. 26,
no. 8, 2014.

[22] C. Koch, Biophysics of computation: information processing in single
neurons. Oxford university press, 1999.

[23] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile
signals from the fingertips in object manipulation tasks,” Nature Reviews
Neuroscience, vol. 10, no. 5, pp. 345–359, 2009.

[24] R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, and
W. Gerstner, “A benchmark test for a quantitative assessment of simple
neuron models,” Journal of neuroscience methods, vol. 169, no. 2, pp.
417–424, 2008.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] M. Waskom, O. Botvinnik, P. Hobson, J. Warmenhoven, J. B. Cole,
Y. Halchenko, J. Vanderplas, S. Hoyer, S. Villalba, E. Quintero,
and et al., “seaborn: v0.6.0 (june 2015),” 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.19108

