980 research outputs found

    An Easy-to-Construct Automated Winkler Titration System

    Get PDF
    The instrument described in this report is an updated version of the high precision, automated Winkler titration system described by Friederich et al.(1984). The original instrument was based on the work of Bryan et al. (1976) who developed a colorimetric endpoint detector and on the work of Williams and Jenkinson (1982) who produced an automated system that used this detector. The goals of our updated version of the device described by Friederich et al. (1984) were as follows: 1) Move control of the system to the MS-DOS environment because HP-85 computers are no longer in production and because more user-friendly programs could be written using the IBM XT or AT computers that control the new device. 2) Use more "off the shelf" components and reduce the parts count in the new system so that it could be easily constructed and maintained. This report describes how to construct and use the new automated Winkler titration device. It also includes information on the chemistry of the Winkler titration, and detailed instructions on how to prepare reagents, collect samples, standardize and perform the titrations (Appendix I: Codispoti, L.A. 1991 On the determination of dissolved oxygen in sea water, 15pp.). A disk containing the program needed to operate the new device is also included. (pdf contains 33 pages

    Adipocytes, aldosterone and obesity-related hypertension

    Get PDF
    Understanding the mechanisms linking obesity with hypertension is important in the current obesity epidemic as it may improve therapeutic interventions. Plasma aldosterone levels are positively correlated with body mass index and weight loss in obese patients is reported to be accompanied by decreased aldosterone levels. This suggests a relationship between adipose tissue and the production/secretion of aldosterone. Aldosterone is synthesized principally by the adrenal glands, but its production may be regulated by many factors, including factors secreted by adipocytes. In addition, studies have reported local synthesis of aldosterone in extra-adrenal tissues, including adipose tissue. Experimental studies have highlighted a role for adipocyte-secreted aldosterone in the pathogenesis of obesity-related cardiovascular complications via the mineralocorticoid receptor. This review focuses on how aldosterone secretion may be influenced by adipose tissue and the importance of these mechanisms in the context of obesity-related hypertension

    NASA-JSC antenna near-field measurement system

    Get PDF
    Work was completed on the near-field range control software. The capabilities of the data processing software were expanded with the addition of probe compensation. In addition, the user can process the measured data from the same computer terminal used for range control. The design of the laser metrology system was completed. It provides precise measruement of probe location during near-field measurements as well as position data for control of the translation beam and probe cart. A near-field range measurement system was designed, fabricated, and tested

    Scientific intuition inspired by machine learning-generated hypotheses

    Get PDF
    Machine learning with application to questions in the physical sciences has become a widely used tool, successfully applied to classification, regression and optimization tasks in many areas. Research focus mostly lies in improving the accuracy of the machine learning models in numerical predictions, while scientific understanding is still almost exclusively generated by human researchers analysing numerical results and drawing conclusions. In this work, we shift the focus on the insights and the knowledge obtained by the machine learning models themselves. In particular, we study how it can be extracted and used to inspire human scientists to increase their intuitions and understanding of natural systems. We apply gradient boosting in decision trees to extract human-interpretable insights from big data sets from chemistry and physics. In chemistry, we not only rediscover widely know rules of thumb but also find new interesting motifs that tell us how to control solubility and energy levels of organic molecules. At the same time, in quantum physics, we gain new understanding on experiments for quantum entanglement. The ability to go beyond numerics and to enter the realm of scientific insight and hypothesis generation opens the door to use machine learning to accelerate the discovery of conceptual understanding in some of the most challenging domains of science

    Subtidal Sedimentary Facies, Southern Moreton Bay

    Get PDF
    On the basis of the mud/sand and carbonate content, sediments are assigned to one of four facies: Clean Sand (non-carbonate), Muddy Sand (low carbonate), Mud (low carbonate) and High Carbonate Facies. The spatial distribution of these facies reflects a complex interplay of bathymetric, hydrodynamic, and provenance factors, sea level fluctuations, relict sediments, and changes in the sedimentation patterns during the Holocene

    Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data

    Get PDF
    We perform a teleseismic P-wave travel-time tomography to examine the geometry and structure of subducted lithosphere in the upper mantle beneath the Alpine orogen. The tomography is based on waveforms recorded at over 600 temporary and permanent broadband stations of the dense AlpArray Seismic Network deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po Plain to the river Main. Teleseismic travel times and travel-time residuals of direct teleseismic P waves from 331 teleseismic events of magnitude 5.5 and higher recorded between 2015 and 2019 by the AlpArray Seismic Network are extracted from the recorded waveforms using a combination of automatic picking, beamforming and cross-correlation. The resulting database contains over 162 000 highly accurate absolute P-wave travel times and travel-time residuals. For tomographic inversion, we define a model domain encompassing the entire Alpine region down to a depth of 600 km. Predictions of travel times are computed in a hybrid way applying a fast TauP method outside the model domain and continuing the wave fronts into the model domain using a fast marching method. We iteratively invert demeaned travel-time residuals for P-wave velocities in the model domain using a regular discretization with an average lateral spacing of about 25 km and a vertical spacing of 15 km. The inversion is regularized towards an initial model constructed from a 3D a priori model of the crust and uppermost mantle and a 1D standard earth model beneath. The resulting model provides a detailed image of slab configuration beneath the Alpine and Apenninic orogens. Major features are a partly overturned Adriatic slab beneath the Apennines reaching down to 400 km depth still attached in its northern part to the crust but exhibiting detachment towards the southeast. A fast anomaly beneath the western Alps indicates a short western Alpine slab whose easternmost end is located at about 100 km depth beneath the Penninic front. Further to the east and following the arcuate shape of the western Periadriatic Fault System, a deep-reaching coherent fast anomaly with complex internal structure generally dipping to the SE down to about 400 km suggests a slab of European origin limited to the east by the Giudicarie fault in the upper 200 km but extending beyond this fault at greater depths. In its eastern part it is detached from overlying lithosphere. Further to the east, well-separated in the upper 200 km from the slab beneath the central Alps but merging with it below, another deep-reaching, nearly vertically dipping high-velocity anomaly suggests the existence of a slab beneath the eastern Alps of presumably the same origin which is completely detached from the orogenic root. Our image of this slab does not require a polarity switch because of its nearly vertical dip and full detachment from the overlying lithosphere. Fast anomalies beneath the Dinarides are weak and concentrated to the northernmost part and shallow depths. Low-velocity regions surrounding the fast anomalies beneath the Alps to the west and northwest follow the same dipping trend as the overlying fast ones, indicating a kinematically coherent thick subducting lithosphere in this region. Alternatively, these regions may signify the presence of seismic anisotropy with a horizontal fast axis parallel to the Alpine belt due to asthenospheric flow around the Alpine slabs. In contrast, low-velocity anomalies to the east suggest asthenospheric upwelling presumably driven by retreat of the Carpathian slab and extrusion of eastern Alpine lithosphere towards the east while low velocities to the south are presumably evidence of asthenospheric upwelling and mantle hydration due to their position above the European slab

    Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography

    Get PDF
    Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (∼ 180 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing local earthquake tomography (LET), allowing us to image the Alpine slabs and their connections with the overlying orogenic lithosphere at an unprecedented resolution. The images call into question the conventional notion that downward-moving lithosphere and slabs comprise only seismically fast lithosphere. We propose that the European lithosphere is heterogeneous, locally containing layered positive and negative Vp anomalies of up to 5 %–6 %. We attribute this layered heterogeneity to seismic anisotropy and/or compositional differences inherited from the Variscan and pre-Variscan orogenic cycles rather than to thermal anomalies. The lithosphere–asthenosphere boundary (LAB) of the European Plate therefore lies below the conventionally defined seismological LAB. In contrast, the lithosphere of the Adriatic Plate is thinner and has a lower boundary approximately at the base of strong positive Vp anomalies at 100–120 km. Horizontal and vertical tomographic slices reveal that beneath the central and western Alps, the European slab dips steeply to the south and southeast and is only locally still attached to the Alpine lithosphere. However, in the eastern Alps and Carpathians, this slab is completely detached from the orogenic crust and dips steeply to the north to northeast. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted as representing hot upwelling asthenosphere that heated the overlying crust, allowing it to accommodate Neogene orogen-parallel lateral extrusion and thinning of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the eastern Alps is likely since its down-dip length matches estimated Tertiary shortening in the eastern Alps accommodated by originally south-dipping subduction of European lithosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the Northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as highly attenuated, largely detached sheets of continental margin and Alpine Tethyan oceanic lithosphere that locally reach down to a slab graveyard in the mantle transition zone (MTZ)

    Potentially Diagnostic Electron Paramagnetic Resonance Spectra Elucidate the Underlying Mechanism of Mitochondrial Dysfunction in the Deoxyguanosine Kinase Deficient Rat Model of a Genetic Mitochondrial DNA Depletion Syndrome

    Get PDF
    A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool

    Local impact of solar variation on NO2 in the lower mesosphere and upper stratosphere from 2007 to 2012

    Get PDF
    MIPAS/ENVISAT data of nighttime NO2 volume mixing ratios (VMR) from 2007 until 2012 between 40 km and 62 km altitude are compared with the geomagnetic Ap index and solar Lyman-α radiation. The local impact of variations in geomagnetic activity and solar radiation on the VMR of NO 2 in the lower mesosphere and upper stratosphere in the Northern Hemisphere is investigated by means of superposed epoch analysis. Observations in the Northern Hemisphere show a clear 27-day period of the NO2 VMR. This is positively correlated with the geomagnetic Ap index at 60-70° N geomagnetic latitude but also partially correlated with the solar Lyman-α radiation. However, the dependency of NO2 VMR on geomagnetic activity can be distinguished from the impact of solar radiation. This indicates a direct response of NOx (NO + NO2) to geomagnetic activity, probably due to precipitating particles. The response is detected in the range between 46 km and 52 km altitude. The NO2 VMR epoch maxima due to geomagnetic activity is altitude-dependent and can reach up to 0.4 ppb, leading to mean production rates of 0.029 ppb (Ap d)-1. Observations in the Southern Hemisphere do not have the same significance due to a worse sampling of geomagnetic storm occurances. Variabilities due to solar variation occur at the same altitudes at 60-70° S geomagnetic latitude but cannot be analyzed as in the Northern Hemisphere. This is the first study showing the direct impact of electron precipitation on NOx at those altitudes in the spring/summer/autumn hemisphere. © 2014 Author(s).F. Friederich and M. Sinnhuber gratefully acknowledge funding by the Helmholtz Association of German Research Centres (HGF), grant VH-NG-624Peer Reviewe
    • …
    corecore