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Abstract: A novel rat model for a well-characterized human mitochondrial 

disease, mitochondrial DNA depletion syndrome with associated 

deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model 

recapitulates the pathologic and biochemical signatures of the human disease. 
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The application of electron paramagnetic (spin) resonance (EPR) spectroscopy 

to the identification and characterization of respiratory chain abnormalities in 

the mitochondria from freshly frozen tissue of the mitochondrial disease 

model rat is introduced. EPR is shown to be a sensitive technique for 

detecting mitochondrial functional abnormality in situ and, here, is particularly 

useful in characterizing the redox state changes and oxidative stress that can 

result from depressed expression and/or diminished specific activity of the 

distinct respiratory chain complexes. As EPR requires no sample preparation 

or non-physiological reagents, it provides information on the status of the 

mitochondrion as it was in the functioning state. On its own, this information 

is of use in identifying respiratory chain dysfunction; in conjunction with other 

techniques, the information from EPR shows how the respiratory chain is 

affected at the molecular level by the dysfunction. It is proposed that EPR has 

a role in mechanistic pathophysiological studies of mitochondrial disease and 

strong potential as an additional diagnostic tool. 

Keywords: DGUOK, redox, oxidative, stress, mtDNA depletion, pathology 
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Introduction 

Mitochondrial disease (MD) occurs where depletion of 

mitochondrial DNA (mtDNA) or mutations in mtDNA and/or nuclear 

DNA (nDNA) lead to altered mitochondrial function.1–4 Altered activities 

of Complexes I – V have been identified and physiological 

consequences of mitochondrial respiratory chain defects include 

reduced metabolic capacity, reduced ATP synthesis, and increased 

oxidative and nitrosative stress.5–15 Symptoms of MD are manifold and 

include weakness (from central nervous system, peripheral nerve, 

and/or skeletal muscle disease), pain, intolerance of some general 

anesthetics and anti-epileptic drugs, gastrointestinal disorders, 

ophthalmoplegia and/or visual failure, failure to thrive, cardiac and 

respiratory disease, liver disease, diabetes, seizures, sensorineural 

hearing loss, mental retardation, dementia, movement disorders, 

increased susceptibility to infection, and pregnancy loss.1,2,16–38 

Establishing diagnoses and understanding the pathophysiology of 

mitochondrial disease (MD) has proven extremely challenging because 

of the extraordinary range of clinical symptoms and testing 

abnormalities.39 MD is often suspected in early childhood from clinical 

differential diagnosis of patients with diseases involving the brain, 

muscle, or liver. Traditional methods for diagnosing MD include clinical 

presentation, family history, pathology, metabolic profiling, enzyme 

activity levels, electrophysiology, magnetic resonance imaging (MRI) 

of brain and magnetic resonance spectroscopy (MRS) of metabolites, 

and mtDNA analysis.3,7,31,40–53 Additional indicators include observation 

of mitochondrial proliferation, abnormalities on muscle histology (e.g., 

ragged red fibers or succinate dehydrogenase-positive fibers),41,54 and 

abnormalities in electron microscopy.46,55 However, muscle histology 

may be normal despite the presence of biochemical abnormalities in 

the tissue. The determination of whether MD is present in a given 

patient can be extremely complex, given that (i) mitochondrial 

function can be secondarily affected due to the disease processes in 

non-mitochondrial diseases, (ii) there can be extensive variability in 

the distribution of abnormal mitochondria within an individual patient, 

allowing a “false negative” testing profile to occur when tissues with 

mitochondrial abnormalities are not tested, and (iii) there are no 

uniform, definitive pathological abnormalities that distinguish all MD 

patients from patients with other disorders. Diagnosis may ultimately 
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rely on the application of diagnostic algorithms to predict the likelihood 

of MD56,57 but MD is currently an under-diagnosed disease.4,58–64 

Mechanistic information on MD has largely arisen from 

mitochondrial electron transport chain component activity assays on 

the components, isolated from their native matrix from fresh or frozen 

tissue, or from cultured cells. These assays are, like most clinical 

biochemical assays, performed under non-physiologic basal conditions 

and with very different substrate concentrations than are seen in-vivo. 

Complex interactions between the substrates of these assays and 

other cellular components can lead to erroneous results65 though these 

problems can, in principle be, overcome with careful isolation of 

proteins or in-gel assays. Assays of activities outside of the intact 

mitochondrial environment cannot identify defects in mitochondrial 

membrane potential or coupling. In clinical practice, it has been found 

that the methodological variations, limitations and difficulties 

associated with the use of respiratory chain functional assays as a 

diagnostic method for MD has led to massive inter-laboratory 

variability in results.66 In alternative approaches, substrates are added 

to whole cells or isolated mitochondrial preparations, and either 

oxygen consumption or ATP generation is measured [reviewed in]67 

While recognized as the current standard for mitochondrial testing 

there are, again, significant limitations. Most apparent is the 

requirement for viable functioning mitochondria, requiring cell 

preparation or mitochondrial isolation and testing to be carried out 

temporally, and therefore geographically, proximate to the biopsy. The 

process of isolating mitochondria from native tissue risks damage and 

places the organelle outside of a truly physiologic condition. 

Conversely, whole cell assays require permeabilization of the cell to 

the substrates and transport to the mitochondria. The potentially 

limited ability to get reagents to the site of action can lead to a loss of 

sensitivity and specificity. In all of the currently employed assays, the 

mitochondrial function is not assessed in its native-organ context in 

the human and the need persists for an assay that measures the 

functional ability of mitochondria in an intact tissue preserved in a 

state as close as possible to that in situ. 

Electron paramagnetic (spin) resonance (EPR, ESR) is a 

technique that can provide unique insight into mitochondrial status. 

EPR detects and characterizes free radicals and many transition metal 
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ions and clusters in biological systems by measuring the magnetic field 

dependence of the absorption of microwave radiation at a given 

frequency by the unpaired electrons residing in these species.68 The 

mitochondrial respiratory chain Complexes I – IV are particularly rich 

in transition metal-containing redox centers, with a complement of 21 

centers that include heme iron, copper, and [2Fe2S], [3Fe4S] and 

[4Fe4S] iron sulfur (FeS) clusters. Up to 18 of these adopt EPR-

detectable paramagnetic states in native mitochondria and are readily 

observed at temperatures close to liquid helium (10 – 40 K).69 The 

spin-Hamiltonian parameters, midpoint potentials and relaxation 

behavior of these centers have been reasonably well characterized,69–87 

along with some other tissue-specific signals from transferrin, 

ceruloplasmin, and catalase.88–90 Specific applications of EPR to 

mitochondria have included detection of an irreversible deficiency in 

Complex I FeS clusters in iron-deficient rats,91 heme-nitrosyl in 

substantia nigra of Parkinson’s diseased brain,92 chromium-dependent 

inhibition of Complexes I & II and aconitase,93 cardio- and neuro-

protection against doxorubicin,80 prophylaxis against 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine in a Parkinson’s mouse model,82 the 

differential sensitivity of aconitase and FeS clusters from Complexes I 

& III to oxidative and nitrosative stress in heart,94 and the sensitivity 

of Complex III FeS clusters in aging heart to ischemia.95 However, 

despite these successes in mechanistic studies, the authors are 

unaware of any direct application of EPR for functional 

pathophysiologic studies in humans or whole animal models with 

primary mitochondrial disease; the closest analog is a study in which a 

comparison of EPR signals from muscle biopsies of sepsis patients 

indicated significant depletion of Complex I FeS signals in those who 

died compared to survivors.86,96 

One group of MD that has been recently well-characterized and 

suggests itself as a promising model for evaluation of new 

pathophysiologic methodologies is the mitochondrial DNA (mtDNA) 

depletion syndromes (MDS). MDS comprises a genetically and clinically 

heterogeneous group of autosomal recessive diseases characterized by 

a reduction in tissue-specific mtDNA copy number. This reduction is a 

result of molecular defects in either the genes responsible for mtDNA 

biogenesis, or those required for the maintenance of deoxynucleotide 

pools or mtDNA integrity.97–99 The loss of mtDNA can lead to a variety 

of clinical presentations that are dependent on the gene involved and 
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the nature of the mutation. Depletion of mtDNA is the most common 

cause of multi-systemic oxidative phosphorylation defects,100 with 

deoxyguanosine kinase (DGUOK) deficiency being the most frequent 

cause. Death commonly results from liver failure,26,97,101,102 which may 

occur in the context of natural disease progression, exposure to 

sodium valproate103–105 or complications of viral infections such as 

influenza.55,106 Less severe attenuation of DGUOK function may result 

in a susceptibility to isolated liver failure97,107,108 or a myopathic 

presentation of DGUOK deficiency.109 Some cases with milder 

mutations have required liver transplantation, with its attendant 

complications, and may subsequently develop myopathy.97,108 Over the 

preceding 5 years, we have developed an accurate method for assay 

of tissue-specific mitochondrial DNA content using quantitative real-

time polymerase chain reaction (qPCR) that has led to accurate 

retrospective modeling and prospective diagnosis of patients with 

hepatic mtDNA depletion.55,110–116 This is accepted as the clinical 

standard for diagnosis of mtDNA depletion.54 The development of a 

robust diagnosis for MDS and the detailed characterization of DGUOK 

deficiency, in particular, suggested to us that an animal model of 

DGUOK deficiency would be of great value in developing and 

evaluating the potential of new diagnostic and pathophysiologic 

techniques for MD. 

In the present work, we aim to introduce EPR of tissue samples 

at cryogenic temperatures as a mechanistic tool for MD. We have 

developed a rat model of DGUOK deficiency (referred to by the trivial 

name “DGUOK”) that exhibits characteristic biomarkers, and we have 

applied standard biochemical and pathological tests along with EPR. 

The goals of this work are to characterize the DGUOK rat in terms of 

mitochondrial dysfunction and pathological outcome, and to evaluate 

EPR as a new and additional technique in an integrated 

characterization of MD. 

Materials and Methods 

The DGUOK rat model of DGUOK deficiency 

Previously described zinc-finger nuclease (ZFN) technology was 

employed.117,118 A preferred binding/cutting site of 
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GTCGGTTCCTTCTGCgtagacTCCGAGCGTCTTTCCG was identified from a 

clinically relevant transcript of DGUOK and the appropriate ZFN was 

obtained from Sigma Aldrich (CompoZr Custom ZFN Service). This was 

injected into the pronucleus of a fertilized one-cell embryo. These 

microinjected embryos were then implanted into a “pseudo-pregnant” 

recipient female rat. This resulted in the generation of four 

characterized DGUOK rat knockout lines named SSdguokM1 SSdguokM2 

SSdguokM3 and SSdguokM4. Because of the rare potential for an off-target 

effect, where ZFNs cause double-strand breaks and mutations at 

undesired loci, we backcrossed and bred homozygote animals from 

these two lines.117 The “M1” line has a 31 base pair deletion after 

amino acid six leading to a premature stop codon, i.e., a polypeptide 

with 34 amino acids (the first 6 from the original protein sequence and 

28 from the missense). Similarly, the “M2” line has a 37 base pair 

amino acid deletion after amino acid six. This frame-shift mutation 

would lead to a 42 amino acid polypeptide with only the first 6 amino 

acids consistent with the original protein sequence. 

The M3 line had a net 57bp frameshift deletion in exon 1 

including the initiation codon which is predicted to lead to the use of 

an alternate start codon in exon 1 with a 5′ truncated protein devoid of 

the mitochondrial targeting sequence. The M4 line had an in-frame 

deletion of 9 nucleotides in the targeting sequence. This strain does 

not have hepatic mtDNA depletion and, because of the adequacy of 

the first two models, was not further characterized. 

The generation of the animal model and all subsequent animal 

experiments were performed under approved Animal Use Application 

by the Institutional Animal Care and Use Committee (IACUC) of the 

Medical College of Wisonsin (protocols 2214 and 1764, respectively). 

mtDNA assay 

Real time analysis was performed as previously published and 

validated in humans55,97,112 using rat specific primers. DNA was 

extracted using Qiagen Blood Core Kit #158389 and quantified using 

the Quant-iT PicoGreen double stranded DNA kit (Invitrogen) and a 

Varioskan plate reader (Thermo Fisher) in 96 well format. DNA is 

diluted to a concentration falling with in efficiency range of the assay 

0.125–4 ng/l. qPCR was carried out on 10 μl samples, each containing 
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between 0.35 and 12 ng of extracted DNA, 5 pmol of each forward and 

reverse primer, and 5 μl iTAQ SYBR Green Supermix with ROX 

(BioRad). The mitochondrial genome-targeted rat-specific primers 

used were tRNALeu F: GGTTATTAGGGTGGCAGAGC and tRNALeu 

R:GGAAGGCCATGGCAATTAAG. Nuclear primers, targeted to the ActB 

coding region, were ActB F:TACCACTGGCATTGTGATGG and ActB R: 

ACGCTCGGTCAGGATCTTC. The Basic Local Alignment Search Tool 

(National Center for Biotechnology Information) was used to show that 

primers hybridized to unique sequences in Rattus norvegicus. The real-

time qPCR cycling conditions were (i) 50°C for 2 min, (ii) 95°C for 10 

min, (iii) 45 cycles of 15 seconds at 95°C, and (iv) a combined 62°C 

anneal/extension for 30 seconds. Upon completion of 45 cycles, a pre-

programmed dissociation step was carried out by one cycle of 95°C for 

15 seconds, 50°C for 15 seconds and 95°C for 15 seconds. Real-time 

fluorescence was measured and analyzed on a 7900HT Fast Real-Time 

PCR system (Applied Biosystems, Foster City, CA) using SDS V2.3 

software. All samples were assayed in triplicate. The relative mtDNA 

copy number was determined from the threshold difference between 

the averages of each set of triplicate reactions. 

Histology 

A portion of each heart, lung, liver, spleen, and kidney from 4 

wild-type SS rats and 5 SSdguokM2DGUOK rats at 11 months of age was 

fixed in formalin for histological analysis. Fixed tissue was paraffin-

embedded, sectioned, and stained with hematoxylin and eosin (H&E) 

using standard techniques. To evaluate possible liver fibrosis, sections 

of liver were also stained using Masson trichrome stain using standard 

techniques. For evaluation of muscle pathology, a quadriceps muscle 

from each animal was frozen in isopentane at −78.5 °C, and 8 μm 

cryosections were stained for H&E, Gomori trichrome, reduced 

nicotinamide adenine dinucleotide (NADH), cytochrome oxidase (COX), 

and succinate dehydrogenase (SDH) using standard techniques. 

Protein immunoblot (western blot) 

Protein homogenates prepared from the quadriceps muscle were 

evaluated for mitochondrial electron transport chain complex 

expression using standard western blot techniques.119 Transferred 
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proteins were probed with a MitoProfile Total OXPHOS Blue Native WB 

Antibody Cocktail (MitoSciences #MS603, Abcam, Cambridge, MA), 

which includes antibodies against mitochondrial respiratory chain 

complexes I–V, and visualized using enhanced chemiluminescence. 

Quantification was performed using ImageJ version 1.44p and 

statistics were evaluated using Student’s t-test. 

Electron transport chain activity assay 

Electron transport chain activity assays were carried out on 

frozen rat muscle and liver (n = 6 for controls and n = 5 for DGUOK 

rats) according to protocols previously described in detail120,121 with the 

modification that the linear initial velocity in the first minute was 

determined for Complex III, instead of a formal rate constant, due to 

the lower activity compared to Complexes I, II and IV. The activities of 

Complexes I – IV were normalized for mitochondrial content by 

dividing by citrate synthase activity. The results of electron transport 

chain activity assays are not normally distributed but become so after 

transformation to their natural logarithms. Results are expressed as 

average values and the standard error of the mean. Significance is 

expressed by the non-parametric Mann-Whitney U test on the raw 

data and by Student’s t-test of the logarithmically transformed data. 

Blue native PAGE analysis with in-gel activity staining was carried out 

as previously described.121–123 This allowed the identification of 

decreased synthesis of mitochondrial subunits.124 

EPR spectroscopy 

Fresh tissue samples for EPR were rapidly extruded into 3 mm 

diameter EPR tubes and frozen in liquid nitrogen within 90 s of harvest 

(we have found that tissue can be frozen much more rapidly than 

dilute aqueous solutions and with much reduced risk of the EPR tube 

breaking). Samples entirely filled the active length of the EPR 

resonator. EPR spectra were recorded on a Bruker EleXsys E600 

spectrometer equipped with a Super-X microwave bridge with 

integrated microwave counter, an ER4112SHQ resonant cavity 

operating at 9.38 GHz, and an Oxford Instruments ESR900 helium flow 

cryostat and ITC503 temperature controller. Spectra were recorded 

with 10 G magnetic field modulation at 100 kHz and this modulation 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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amplitude determined the spectral resolution. Microwave powers and 

temperatures are given in the figure legends. Scans of 4096 points, 

8000 G field envelope and 3 min duration were averaged over 60 – 

180 min to provide the final spectrum. A background spectrum 

collected on frozen water was subtracted from rat tissue spectra. 

Experimental spectra were modeled by fitting a library of computed 

spectra corresponding to the mitochondrial respiratory chain centers 

and the [3Fe4S] cluster of aconitase,69 using a Levenberg-Marquardt 

algorithm to minimize χ2 (IGOR Pro v. 6.32A, Wavemetrics, Lake 

Oswego, OR). The contributions of each component were constrained 

to ≥ 0. Correlation matrices indicated strong interdependencies 

(correlation coefficients ~ 0.7) of contributions from the pairs of 

signals (i) Complex II S3 3Fe4S and aconitase 3Fe4S, and (ii) Complex 

I N1b and N2 FeS clusters. N1b and N2 could not be deconvoluted and 

only the overall contribution from N1b + N2 is given, whereas S3 and 

aconitase were deconvoluted by the use of two temperatures.69 

Computed spectra of the individual components were calculated with 

XSophe (Bruker Biospin;125,126) using spin Hamiltonian parameters 

from the literature,69–79 and computed spectra were normalized for the 

intensity of ∫χ″.dH (i.e. the first integral of the EPR absorption, or so-

called “double-integrated spectrum”) prior to fitting to the 

experimental data. 

Results 

Recapitulation of mtDNA depletion in DGUOK rat 

To evaluate the phenotype, three M2, four M1 and six SS 8-

week-old females were sacrificed and tissue harvested. DNA was 

extracted and subject to qPCR evaluation using validated rat-specific 

primers, but otherwise as previously described.112 This method 

demonstrates an approximately 90% reduction in hepatic mtDNA 

content (Figure 1). This reduction is similar to the 80–90% reduction 

in hepatic mtDNA seen in humans with this disorder.112 Similarly, a 

60–80% reduction in splenic DNA content was observed.100 The 

situation was less clear in muscle; while M1 rats exhibited about 60 % 

depletion in mtDNA, the mtDNA level in the M2 rat was 

indistinguishable from that in wild-type. Consequently mtDNA content 

was assessed in sections of the same tissue that was used for 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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Histology, ETC and EPR assays. This demonstrates no significant 

difference in mtDNA content in skeletal muscle, regardless of 

predominant oxidative fiber type (Table S1). 

 

Figure 1: Absolute mtDNA content in DGUOK rats 

The mtDNA copy numbers for eight week old M1 and M2 DGUOK knockout rats 
compared with wild-type (SS) rats. The error bars indicate standard deviations for n = 
6 (SS), n = 4 (M1) and n = 3 (M2). 

Pathology of the DGUOK rat 

A pathological analysis was performed on 4 wild-type and 5 

DGUOK rats at approximately 11 months of age, including the 

histological evaluation of heart, lung, liver, spleen, kidney, and 

muscle. H&E-stained sections of heart, lung, liver, spleen, and kidney 

revealed no apparent differences in the organ histology when 

comparing wild-type and DGUOK rats. Liver fibrosis was further 

evaluated using Masson trichrome staining, which also showed no 

evident differences between wild-type and DGUOK livers. In contrast, 

there were marked differences on oxidative enzyme staining when 

comparing the quadriceps muscles of wild-type and DGUOK rats 

(Figure 2). While pathological differences were not apparent on H&E 

staining, there were numerous fibers that showed negative staining on 

both cytochrome oxidase (COX) and succinate dehydrogenase (SDH) 

stains (Figure 2). Large numbers (up to 20–30% of fibers) of these 

COX negative/SDH negative fibers were seen in all DGUOK rats, 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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whereas they were essentially absent in all of the wild-type rat 

muscles examined. 

 

Figure 2. Skeletal muscle pathology in 11 month old WT and DGUOK rats 
Quadriceps muscles from DGUOK rats display little differences on H&E staining in 
comparison to WT littermates. In contrast, staining for COX and SDH reveals 
numerous fibers in DGUOK rat muscle that are negative for both COX and SDH, 
whereas no such fibers were evident in WT rat muscle. The bar at the bottom, right 

corresponds to 200 μm. 

Expression of respiratory chain complexes 

Mitochondrial protein expression was found to be altered in 

quadriceps muscle of the 11 month old DGUOK rat (Figure 3). 

Specifically, the data indicated that Complex I was significantly under-

expressed (54 % of wild-type; p = 0.05) and suggested that Complex 

III was also under expressed (47 % of wild-type; p = 0.12). The 

expression levels of Complexes II, IV & V were unchanged in DGUOK 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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rat muscle. Varying, though generally low, amounts of an unidentified 

immunoreactive protein with Mr ≈ 30 kDa were also observed. 

 

Figure 3. Respiratory chain complex expression in DGUOK rat muscle 

Western blots of mitochondrial electron transport chain complexes I–V and GAPDH 
from stripped membranes of quadriceps muscle from 11 month old wild-type and 
DGUOK rats are shown in the top panel. The results of quantitation of the respiratory 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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chain complex bands are shown below, normalized for GAPDH expression. The error 

bars indicate standard errors for n = 4. 

Electron chain transport assays 

Significantly lower activities for Complexes I, III and IV were 

observed in DGUOK rat liver, corresponding to about 20 %, 7 % and 

13 % of wild-type activity, respectively, whereas Complex II activities 

were statistically indistinguishable (Figure 4, Table 1). In DGUOK 

muscle, the activities of Complexes I and III were only 9 % and 20 % 

of wild-type, respectively, whereas Complex II and IV activities were 

essentially indistinguishable. 

 

Figure 4. Electron transport chain functional assays of Complexes I– IV 

The functional activities of Complexes I – IV from liver and quadriceps muscle of 
DGUOK rat are shown, normalized for mitochondrial content (as citrate synthase 
activity) and expressed as percentages of activities from wild-type. Detailed results 
are given in Table 1 (or S1). 

 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/#SD1


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Free Radical Biology and Medicine, Vol 92 (March 2016): pg. 141-151. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

16 

 

Table 1. Results of electron transport chain assays of Complexes I – IV from 

muscle and liver from wild-type and DGUOK rats 

TISSUE 

Activity 
assayed 

1000 × Wild-type 

activity ÷ citrate 
synthase activity 

1000 × DGUOK 

activity citrate ÷ 
synthase activity 

Mann-

Whitney U 
test p-value 

t-Test with 

transformed data 
p-value 

LIVER 
    

Complex I 230.08 ± 18.81 47.64 ± 9.53 0.008 0.002 

Complex 
II 

991.9 ± 95.3 1291.6 ± 258.3 0.522 0.250 

Complex 

III 

14.35 ± 0.80 1.02 ± 0.20 0.008 0.001 

Complex 
II – III 

430.1 ± 32.6 129.3 ± 25.9 0.029 0.012 

Complex 

IV 

137.54 ± 11.69 17.70 ± 3.54 0.014 0.002 

MUSCLE 
    

Complex I 108.1 ± 8.25 9.73 ± 4.25 0.008 0.015 

Complex 
II 

278.1 ± 16.42 215.8 ± 18.41 0.522 0.093 

Complex 
III 

3.43 ± 0.48 0.70 ± 0.18 0.036 0.025 

Complex 
II –III 

263.7 ± 28.53 157.6 ± 15.36 1.00 0.070 

Complex 
IV 

38.63 ± 5.60 53.93 ± 8.76 0.412 0.434 

EPR spectroscopy 

The EPR spectra at 12 K of liver, quadriceps muscle and heart 

from wild-type and DGUOK rats are shown in Figure 5. The signals are 

complex but some features are immediately identifiable and are 

labeled a – k in Figure 5. Feature a at g′ ~ 6 is due to high-spin 

ferriheme; b at g′ ~ 4 is due largely to Fe(III) in transferrin; a 

complex pattern extending upfield from c is due to Mn(II), which is 

prominent in liver but much less so in quadriceps muscle and not 

detectable in heart, and overlaps the signals from the respiratory chain 

iron sulfur clusters; the prominent feature at d is the so-called “g = 

2.01” signal and is due to overlapping signals from the oxidized 3Fe4S 

clusters of Complex II and oxidatively-damaged aconitase; the signal 

at e, the so-called “g = 1.94” signal, is due to overlapping g2 

resonances from reduced 2Fe2S and 4Fe4S clusters, primarily those 

from Complex I; the signals at f are the g3 resonances from Complex I 

N4 4Fe4S (lower field) and Complex I N3 2Fe2S (higher field) and are 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
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overlaid on the highest field mI = 5/2 resonance of the mS = ½ 

manifold of S = 5/2 Mn(II) (the latter is not clear in trace A but much 

more pronounced in trace B); the resonances labeled g are gx and gy 

of the rhombic high-spin ferriheme of catalase;88 the resonances 

around h are due to low-spin ferriheme; feature i is the g1 (gx) 

resonance of low-spin heme a of Complex IV; and k indicates the g1 

(gx; lower field) and g3 (gz; higher field) resonances from the Rieske 

2Fe2S cluster of Complex II. The broad EPR absorption in the liver 

spectra from about 2000 G is largely due to rapid-passage of the 

Mn(II) leading to an absorption-like signal that includes components 

from the mS = 3/2 and mS = 5/2 manifolds,127 along with some 

contribution from CuA of Complex IV. 

 

Figure 5. 12 K EPR spectra from wild-type and DGUOK rat tissue 
The spectra are from samples of A, wild-type rat liver; B, DGUOK rat liver; C, wild-
type rat quadriceps muscle; D, DGUOK rat quadriceps muscle; E, wild-type rat heart; 
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and F, DGUOK rat heart. In each case, the sample completely filled the part of the EPR 

tube that occupied the active region of the resonator. A & B shown × 1, C & D are 
shown × 2, and E & F shown × 0.5. Spectra were recorded at 12 K, 2.5 mW power. 
The lower-case labels identify specific signals in the spectra: (a) high-spin axial 
ferriheme g⊥; (b) transferrin non-heme Fe(III); (c) the mI = 5/2 line at the low-field 

extremity of the six-line Mn(II) hyperfine pattern; (d) overlapping signals from 
aconitase and S3 [3Fe4S] clusters; (e) overlapping g2 resonances from Complex I 
[2Fe2S] and [4Fe4S] clusters; (f) resolved g3 resonances from N4 and N3 clusters; (g) 
high-spin catalase gx and gy lines; (h) low-spin catalase resonances; (i) heme a g1; 
and (k) Rieske [2Fe2S] cluster g1 and g3 resonances. 

Visual inspection of the spectra provides some limited 

information. Mn(II) is clearly elevated in DGUOK liver whereas the 

reduced Complex I FeS signals (e, f) are diminished. In DGUOK 

quadriceps muscle, the Complex I FeS signals and the Complex III 

Rieske signals are markedly diminished compared to wild-type. In both 

muscle and liver, the g = 2.01 signal (d) due to Complex II S3 and/or 

aconitase appears elevated in DGUOK compared to wild-type. To 

further investigate this phenomenon, spectra were recorded at 40 K 

(Figure 6) where the faster-relaxing S3 signal intensity is lowered 

relative to the more slowly relaxing aconitase signal. In liver, the 

difference in intensity of the g = 2.01 signal persists and we assign 

this as being due to a 25 % increase in the aconitase signal in DGUOK 

over wild-type. In quadriceps muscle at 40 K, the DGUOK signal is now 

smaller than the wild-type signal, indicating that the difference at 12 K 

is due to elevated amounts of oxidized Complex III S3 3Fe4S. Clear 

signals due to g1 (gx) of heme a of Complex IV were only observed in 

heart. The signals in liver and quadriceps were much broader and 

suggestive of a distribution of g-values; this resonance position of this 

signal was found to be very sensitive to mutations in bacterial 

cytochrome c oxidase128 and the apparent distribution of g1 values may 

reflect multiple environments in liver mitochondria. In liver, the signal 

from transferrin was elevated and that from catalase was depressed. 

Interestingly, no significant differences at all were observed between 

the EPR spectra of heart from wild-type and DGUOK rats. 
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Figure 6. 40 K EPR spectra from wild-type and DGUOK rat tissue 

The spectra are from samples of A, wild-type rat liver (solid line) and DGUOK rat liver 
(dashed line); and B, wild-type rat quadriceps muscle (solid line) and DGUOK rat 
muscle (dashed line). Spectra were recorded at 40 K, 2.5 mW power. 

For quantitative information we turned to computer simulation 

of the spectra. Figure 7 shows the g ~ 2 region of the experimental 

spectra for liver (A, B), quadriceps muscle (E, F) and heart (I, J) from 

DGUOK and wild-type rats. In each case, fits to the library of 

computed spectra were generated. As we are particularly interested in 

the differences between wild-type and DGUOK, difference spectra 

(DGUOK minus wild-type) of the experimental data (C, G and K for 

liver, muscle and heart, respectively) and the computed fits (D and H 

for liver and muscle; no significant difference was observed between 

the fits to wild-type and DGUOK heart) are presented. The 

experimental and computed difference spectra match very well and 

details of the fits are given in Table 2/Table S2. From the fit 

parameters, and using the dual temperature study to resolve the S3 
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and aconitase 3Fe4S contributions, we calculated the fractional 

difference between the intensities of each of the components in the 

DGUOK and wild-type tissues, and the significant results are 

summarized in Figure 8. 

 

Figure 7. Quantitative analysis of the 12 K EPR signals from wild-type and DGUOK rat 

tissues 
Traces A, B, E, F, I and J show the g′ ~ 2 region of the EPR spectra of A, wild-type rat 
liver; B, DGUOK rat liver; E, wild-type rat quadriceps muscle; F, DGUOK rat 
quadriceps muscle; I, wild-type rat heart; and J, DGUOK rat heart. Trace C is the 
difference spectrum obtained by subtraction of A from B, and is shown multiplied by a 
factor of two; likewise, G = 2×(F − E) and K = 2×(J − I). Trace D is a theoretical 

simulation of C generated by the subtraction of fits of A and B to model spectra of the 

https://doi.org/10.1016/j.freeradbiomed.2016.01.001
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/figure/F8/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/figure/F7/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Free Radical Biology and Medicine, Vol 92 (March 2016): pg. 141-151. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

21 

 

paramagnetic species likely to be observed in the mitochondrion. Fitting parameters 

are presented in Table 2 (or S2). Similarly, trace H is a simulation of J from fits to E 
and F. No attempt was made to simulate K, as no significant differences were 
observed between fits to I and J. 

 

 

Figure 8. Summary of EPR of DGUOK rat liver and muscle 
A comparison of signal intensities is shown for some of the respiratory complex redox 

centers in liver and muscle from the DGUOK and wild-type rat. The standard errors 
were calculated from those of the fit parameters, presented in Table 2 (or S2). 

 

Table 2. Fitting parameters for the EPR signals from spectra of liver and 

muscle tissue from wild-type and DGUOK rats. The absolute intensities of 

each species (or group of species) are shown for wild-type and DGUOK, along 

with the percentage differences between DGUOK and wild-type intensities in 

brackets 

EPR Signal Liver 

W/T 

Liver DGUOK [Δ 

(%)]a 

Muscle 

W/T 

Muscle DGUOK [Δ 

(%)] 

Heartb 

CuA 47 ± 13 44 ± 15 [NS]c 9 ± 1 13 ± 1 [+45] NDd 
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EPR Signal Liver 
W/T 

Liver DGUOK [Δ 
(%)]a 

Muscle 
W/T 

Muscle DGUOK [Δ 
(%)] 

Heartb 

Heme a 200 ± 50 100 ± 60 [−50] ND ND 200 ± 30 

High-spin heme 116 ± 7 71 ± 9 [−39] 44 ± 1 31 ± 1 [−30] 183 ± 3 

N1b + N2 26 ± 5 16 ± 5 [−39] 28.2 ± 0.2 7.4 ± 0.5 [−74] 111 ± 1 

FeS N3 17 ± 8 8 ± 5 [−53] 16 ± 1 5.5 ± 0.7 [−61] 38 ± 4 

FeS N4 41 ± 8 20 ± 6 [−51] 33 ± 1 14 ± 1 [−59] 108 ± 4 

All Complex I 
FeS 

84 ± 12 44 ± 9 [−49] 77 ± 1 26 ± 1 [−66] 257 ± 6 

S3 + Acn 10.8 ± 
1.6 

15 ± 2 [+37] 1.3 ± 0.1 3.8 ± 0.1 [+192] 17 ± 1 

FeS S1 27 ± 10 29 ± 13 [NS] 15 ± 1 8 ± 1 16 ± 5 

FeS S2 ND ND ND ND 60 ± 5 

S1 + S2 27 ± 10 29 ± 13 [NS] 15 ± 1 8 ± 1 [−48] 76 ± 7 

Rieske FeS 99 ± 11 98 ± 12 [NS] 37 ± 1 18 ± 1 [−51] 238 ± 5 

Mn(II) 295 ± 27 588 ± 32 [+99] 32 ± 3 20 ± 2 [−35] ND 

aCalculated as {[(DGUOK signal) − (wild-type signal)] ÷ (wild-type signal)}×100. 
bWild-type and DGUOK heart were indistinguishable. 
cNot significant. 
dNone detected. 

Discussion 

The aims of this work are to describe the DGUOK rat 

mitochondrial phenotype and evaluate it as a model for mitochondrial 

disease, and to apply EPR spectroscopy of tissue to enable an 

understanding of what happens at the electron level in tissue with 

mtDNA depletion. The DGUOK rat has a complex and tissue-dependent 

mitochondrial phenotype. The DGUOK liver exhibited markedly lower 

mtDNA copy number, ~ 10 % of wild-type. However, EPR showed that 

Complex I FeS clusters were present at least 50 % as much as in wild-

type, and signals from S1, S2, S3 and the Rieske FeS clusters 

indicated that Complexes II and III are expressed at the same level as 

in wild-type. The observation that the four EPR-detectable FeS cluster 

signals are depleted by the same amounts, despite very different 

redox potentials, and that signal intensities from both the S1–S2 pair 

and the Rieske cluster are indistinguishable from wild-type suggests 

that (i) the lowered Complex I signals are due to depressed expression 

or Fe incorporation, rather than an elevated redox potential, and (ii) 

the depleted Complex I complement therefore provides sufficient 

electrons to load the electron transfer chain. The aconitase 3Fe4S 

signal, a characteristic marker for oxidative stress,82 was elevated in 

DGUOK liver. Also, Mn(II), which is present at high levels in wild-type 

liver and is proposed to be additionally generated in response to 
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http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/table/T2/#TFN1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/table/T2/#TFN2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047058/#R82


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Free Radical Biology and Medicine, Vol 92 (March 2016): pg. 141-151. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

23 

 

oxidative stress,127 was doubled compared to wild-type. The activities 

of Complexes I, III and IV in DGUOK liver were very depressed 

compared to wild-type, and by far more that can be accounted for by 

expression levels. It is tempting to speculate that the oxidative stress 

identified by the aconitase and Mn(II) EPR signals is either a cause or 

consequence of the additional Complex I, II and IV dysfunction in 

DGUOK liver. The very low levels of Complexes III and IV activities 

explain the EPR observation that the electron transfer chain remains 

electron-rich, and the redox potential maintained close to the 

NADH:NAD midpoint potential, even though Complex I activity is also 

significantly depressed. The elevation of the EPR signal from 

transferrin may indicate some hemorrhaging, and the depression of 

the catalase signal also suggests some disease or damage to the 

liver.129 

The mitochondrial phenotype in DGUOK quadriceps muscle is 

also complex. Consistent with muscle evaluated in humans with severe 

disease, protein expression levels for Complexes I and III were also ~ 

50 % of wild-type, whereas Complexes II, IV and V were expressed at 

wild-type.108 However, in contrast to humans with severe disease, the 

mtDNA copy numbers for wild-type and M2 DGUOK were similar across 

all muscle groups [table S1]. This lack of difference in the muscle 

types may reflect variability in sampling, the milder phenotype in the 

rats or an underlying correction in muscle tissue for example by de 

novo purine synthesis or alternate salvage pathways. This data 

underscores the limited sensitivity of qPCR previously described in 

human muscle112 and emphasizes the need to consider evaluation of 

liver specifically for depletion in this disease. 

Consistent with protein expression levels, EPR of DGUOK 

quadriceps muscle indicated that Complex I is present at ≥ 35 % of 

the wild-type level and Complex III at about 50 %. The EPR data for 

Complex II are revealing. The S3 cluster signal was twice as intense as 

in wild-type, yet the S1 and S2 clusters were diminished by a factor of 

two. This could indicate a catastrophic inability to correctly assemble 

Complex II or incorporate S1 and S2 but this would be expected to 

essentially abolish activity, and the elevation of S3 would require a 

doubling of Complex II expression. Neither phenomenon was 

observed. More likely, the changes in S1, S2 and S3 reflect a Complex 

II that experiences a significantly more oxidizing redox potential than 
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in wild-type mitochondria. This hypothesis is strongly supported by the 

very low Complex I electron transferring activity compared to the 

downstream activities of Complexes II, III and IV. Therefore, Complex 

II is drained of electrons and produces the EPR signature observed in 

DGUOK quadriceps muscle. This scenario also explains the lack of 

markers for oxidative stress in the EPR signature of DGUOK muscle. In 

the absence of Complex I activity, very few electrons enter the 

respiratory chain to begin with. Furthermore, the downstream 

components are in a more oxidized state and thus are primed to 

receive any electrons that do enter the respiratory chain, essentially 

acting as antioxidants. So, while Complex III dysfunction results in 

electron buildup and oxidative stress in DGUOK liver, the lack of 

activity of Complex I and downstream oxidation of Complexes II – IV 

in muscle does not result in oxidative stress even though Complex III 

activity is as depressed in muscle as it is in liver. The only EPR marker 

observed for Complex IV in this study, the heme a signal, was very 

weak and broad in muscle and was not significant in the fits. 

Nevertheless, visual examination suggests a comparable signal in wild-

type and DGUOK, consistent with the significant Complex IV activity. 

What remains unclear is the reason(s) behind the low activities of 

Complexes I and III. Native PAGE provides no evidence for subunit 

depletion, and EPR does not indicate oxidative stress. 

In contrast to liver and quadriceps muscle, the heart in the 

DGUOK rat appears entirely unaffected. The mtDNA copy numbers are 

normal and the EPR signals of wild-type and DGUOK heart are 

indistinguishable themselves and very similar to wild-type quadriceps 

muscle. Large EPR signals from Complex I N3 and N4, a large signal 

from Complex III Rieske 2Fe2S, a high ratio of the g = 1.94 and g = 

2.01 signals, and a weak signal from Complex IV heme a all indicate a 

very reducing environment that is consistent with an active Complex I 

and a fully functioning respiratory chain that does not produce 

oxidative stress. 

EPR is a unique tool in that it can interrogate the status of the 

mitochondrion at the time of freezing, in unprocessed viable biological 

samples. First, it is clear that in both liver and quadriceps muscle, EPR 

identified mitochondrial dysfunction in the DGUOK rat. Second, some 

mechanistic information on the DGUOK rat was obtained. In liver, the 

EPR results indicated that the reduced electron transfer chain activity 
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of Complexes I is in part due to reduced expression but that the very 

low activity of Complex, III is not a consequence of reduced 

expression or Fe incorporation as FeS clusters. The retention of the 

Complex III Rieske 2Fe2S EPR signal in DGUOK liver indicates that 

Complex III is present at wild-type levels, incorporates the Rieske 

cluster, and electrons can progress through the respiratory chain at 

least as far as the Rieske cluster. The reason for Complex III inactivity 

remains unknown but appears to be downstream of the Rieske cluster. 

Oxidative stress may be important, and two independent markers for 

oxidative stress were identified, elevated aconitase 3Fe4S and Mn(II); 

two markers for liver damage were also identified, depressed catalase 

and elevated transferrin. In quadriceps muscle, EPR provides 

complementary information to the activity assays. The lack of Complex 

I activity and the EPR identification of oxidation of the three Complex 

II FeS clusters provides a rationale for the lack of any EPR markers for 

oxidative stress in muscle. A knowledge of whether oxidative stress is 

a consequence of mitochondrial disease, and in which tissues and why, 

is an important piece of information that may inform therapy choices. 

Conclusions 

The DGUOK rat capitulates major biochemical features observed 

in humans with DGUOK deficiency, specifically significantly reduced 

mtDNA content, reduced mitochondrial complex I, III and IV protein 

content and enzymatic activity in frozen liver. EPR assessment of 

flash-frozen tissues has demonstrated dramatic differences in the 

mitochondrial electron transport chain status in situ compared with 

wild-type animals. The reproducibility and magnitude of these 

differences is encouraging given the relatively mild pathologic 

differences seen in the animals. It suggests that EPR may be able to 

reliably distinguish individuals with mitochondrial disease from distinct 

etiologies of muscle or liver disease in humans. 

Highlights 

• A rat model of DGUOK deficiency approximates the human disease 

• EPR is sensitive for detecting mitochondrial functional abnormality 

in situ. 

• EPR shows how the respiratory chain is affected by mitochondrial 

disease. 
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• EPR has a role in mechanistic pathophysiological studies of 

mitochondrial disease 

• There is strong potential for EPR as an additional diagnostic tool. 

Abbreviations 

COX cytochrome oxidase 

M2 deoxyguanosine kinase-deficient rat model 

DGUOK deoxyguanosine kinase 

EPR 

(ESR) 
electron paramagnetic (spin) resonance 

FeS iron-sulfur (cluster) 

H&E hematoxylin and eosin 

MD mitochondrial disease 

MDS mitochondrial DNA depletion syndrome 

MPV17 mitochondrial inner membrane protein 

mtDNA mitochondrial DNA 

NADH reduced nicotinamide adenine dinucleotide 

POLG DNA polymerase γ 

SDH succinate dehydrogenase 

TWINKLE 
a mitochondrial DNA helicase encoded by chromosome 10, open 

reading frame 2 (also known as C10orf2) 
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Page 13, 2nd paragraph, p = 0.12 seems a statistical insignificant result. Can authors comment on this result? 
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significantly great that the result was statistically insignificant. The figure legend has been corrected. 
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Abstract. 

A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion 

syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model 

recapitulates the pathologic and biochemical signatures of the human disease. The application of electron 

paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory 

chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is 

introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormality in situ 

and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result 

from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As 

EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the 

mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory 

chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory 

chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic 

pathophysiological studies of mitochondrial disease and strong potential as an additional diagnostic tool. 
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EPR demonstrates marked signal changes in a rat with DGUOK deficiency that resembles human disease 
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Introduction. 

 Mitochondrial disease (MD) occurs where depletion of mitochondrial DNA (mtDNA) or mutations in 

mtDNA and/or nuclear DNA (nDNA) lead to altered mitochondrial function.(1-4) Altered activities of Complexes 

I – V have been identified and physiological consequences of mitochondrial respiratory chain defects include 

reduced metabolic capacity, reduced ATP synthesis, and increased oxidative and nitrosative stress.(5-15) 

Symptoms of MD are manifold and include weakness (from central nervous system, peripheral nerve, and/or 

skeletal muscle disease), pain, intolerance of some general anesthetics and anti-epileptic drugs, 

gastrointestinal disorders, ophthalmoplegia and/or visual failure, failure to thrive, cardiac and respiratory 

disease, liver disease, diabetes, seizures, sensorineural hearing loss, mental retardation, dementia, movement 

disorders, increased susceptibility to infection, and pregnancy loss.(1, 2, 16-38) Establishing diagnoses and 

understanding the pathophysiology of mitochondrial disease (MD) has proven extremely challenging because 

of the extraordinary range of clinical symptoms and testing abnormalities (39). MD is often suspected in early 

childhood from clinical differential diagnosis of patients with diseases involving the brain, muscle, or liver. 

Traditional methods for diagnosing MD include clinical presentation, family history, pathology, metabolic 

profiling, enzyme activity levels, electrophysiology, magnetic resonance imaging (MRI) of brain and magnetic 

resonance spectroscopy (MRS) of metabolites, and mtDNA analysis (3, 7, 31, 40-53). Additional indicators 

include observation of mitochondrial proliferation, abnormalities on muscle histology (e.g., ragged red fibers or 

succinate dehydrogenase-positive fibers) (41, 54), and abnormalities in electron microscopy (46, 55). However, 

muscle histology may be normal despite the presence of biochemical abnormalities in the tissue. The 

determination of whether MD is present in a given patient can be extremely complex, given that (i) 

mitochondrial function can be secondarily affected due to the disease processes in non-mitochondrial diseases, 

(ii) there can be extensive variability in the distribution of abnormal mitochondria within an individual patient, 

allowing a “false negative” testing profile to occur when tissues with mitochondrial abnormalities are not tested, 

and (iii) there are no uniform, definitive pathological abnormalities that distinguish all MD patients from patients 

with other disorders. Diagnosis may ultimately rely on the application of diagnostic algorithms to predict the 

likelihood of MD  (56, 57) but MD is currently an under-diagnosed disease (4, 58-64). 

 Mechanistic information on MD has largely arisen from mitochondrial electron transport chain 

component activity assays on the components, isolated from their native matrix from fresh or frozen tissue, or 
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from cultured cells. These assays are, like most clinical biochemical assays, performed under non-physiologic 

basal conditions and with very different substrate concentrations than are seen in-vivo. Complex interactions 

between the substrates of these assays and other cellular components can lead to erroneous results (65) 

though these problems can, in principle be, overcome with careful isolation of proteins or in-gel assays. Assays 

of activities outside of the intact mitochondrial environment cannot identify defects in mitochondrial membrane 

potential or coupling. In clinical practice, it has been found that the methodological variations, limitations and 

difficulties associated with the use of respiratory chain functional assays as a diagnostic method for MD has 

led to massive inter-laboratory variability in results (66). In alternative approaches, substrates are added to 

whole cells or isolated mitochondrial preparations, and either oxygen consumption or ATP generation is 

measured [reviewed in (67)]. While recognized as the current standard for mitochondrial testing there are, 

again, significant limitations. Most apparent is the requirement for viable functioning mitochondria, requiring cell 

preparation or mitochondrial isolation and testing to be carried out temporally, and therefore geographically, 

proximate to the biopsy. The process of isolating mitochondria from native tissue risks damage and places the 

organelle outside of a truly physiologic condition. Conversely, whole cell assays require permeabilization of the 

cell to the substrates and transport to the mitochondria. The potentially limited ability to get reagents to the site 

of action can lead to a loss of sensitivity and specificity. In all of the currently employed assays, the 

mitochondrial function is not assessed in its native-organ context in the human and the need persists for an 

assay that measures the functional ability of mitochondria in an intact tissue preserved in a state as close as 

possible to that in situ.  

 Electron paramagnetic (spin) resonance (EPR, ESR) is a technique that can provide unique insight into 

mitochondrial status. EPR detects and characterizes free radicals and many transition metal ions and clusters 

in biological systems by measuring the magnetic field dependence of the absorption of microwave radiation at 

a given frequency by the unpaired electrons residing in these species (68). The mitochondrial respiratory chain 

Complexes I - IV are particularly rich in transition metal-containing redox centers, with a complement of 21 

centers that include heme iron, copper, and [2Fe2S], [3Fe4S] and [4Fe4S] iron sulfur (FeS) clusters. Up to 18 

of these adopt EPR-detectable paramagnetic states in native mitochondria and are readily observed at 

temperatures close to liquid helium (10 - 40 K) (69). The spin-Hamiltonian parameters, midpoint potentials and 

relaxation behavior of these centers have been reasonably well characterized (69-87), along with some other 
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tissue-specific signals from transferrin, ceruloplasmin, and catalase (88-90). Specific applications of EPR to 

mitochondria have included detection of an irreversible deficiency in Complex I FeS clusters in iron-deficient 

rats (91), heme-nitrosyl in substantia nigra of Parkinson's diseased brain (92), chromium-dependent inhibition 

of Complexes I & II and aconitase (93), cardio- and neuro-protection against doxorubicin (80), prophylaxis 

against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in a Parkinson's mouse model (82), the differential 

sensitivity of aconitase  and FeS clusters from Complexes I & III to oxidative and nitrosative stress in heart (94), 

and the sensitivity of Complex III FeS clusters in aging heart to ischemia (95). However, despite these 

successes in mechanistic studies, the authors are unaware of any direct application of EPR for functional 

pathophysiologic studies in humans or whole animal models with primary mitochondrial disease; the closest 

analog is a study in which a comparison of EPR signals from muscle biopsies of sepsis patients indicated 

significant depletion of Complex I FeS signals in those who died compared to survivors (86, 96). 

 One group of MD that has been recently well-characterized and suggests itself as a promising model 

for evaluation of new pathophysiologic methodologies is the mitochondrial DNA (mtDNA) depletion syndromes 

(MDS). MDS comprises a genetically and clinically heterogeneous group of autosomal recessive diseases 

characterized by a reduction in tissue-specific mtDNA copy number. This reduction is a result of molecular 

defects in either the genes responsible for mtDNA biogenesis, or those required for the maintenance of 

deoxynucleotide pools or mtDNA integrity (97-99). The loss of mtDNA can lead to a variety of clinical 

presentations that are dependent on the gene involved and the nature of the mutation. Depletion of mtDNA is 

the most common cause of multi-systemic oxidative phosphorylation defects (100), with deoxyguanosine 

kinase (DGUOK) deficiency being the most frequent cause. Death commonly results from liver failure (26, 97, 

101, 102), which may occur in the context of natural disease progression, exposure to sodium valproate (103-

105) or complications of viral infections such as influenza (55, 106). Less severe attenuation of DGUOK 

function may result in a susceptibility to isolated liver failure (97, 107, 108) or a myopathic presentation of 

DGUOK deficiency (109). Some cases with milder mutations have required liver transplantation, with its 

attendant complications, and may subsequently develop myopathy (97, 108). Over the preceding 5 years, we 

have developed an accurate method for assay of tissue-specific mitochondrial DNA content using quantitative 

real-time polymerase chain reaction (qPCR) that has led to accurate retrospective modeling and prospective 

diagnosis of patients with hepatic mtDNA depletion (55, 110-116). This is accepted as the clinical standard for 
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diagnosis of mtDNA depletion (54). The development of a robust diagnosis for MDS and the detailed 

characterization of DGUOK deficiency, in particular, suggested to us that an animal model of DGUOK 

deficiency would be of great value in developing and evaluating the potential of new diagnostic and 

pathophysiologic techniques for MD. 

 In the present work, we aim to introduce EPR of tissue samples at cryogenic temperatures as a 

mechanistic tool for MD. We have developed a rat model of DGUOK deficiency (referred to by the trivial name 

"DGUOK") that exhibits characteristic biomarkers, and we have applied standard biochemical and pathological 

tests along with EPR. The goals of this work are to characterize the DGUOK rat in terms of mitochondrial 

dysfunction and pathological outcome, and to evaluate EPR as a new and additional technique in an integrated 

characterization of MD. 

 

Materials and Methods. 

The DGUOK rat model of DGUOK deficiency. Previously described zinc-finger nuclease (ZFN) 

technology was employed (117, 118). A preferred binding/cutting site of 

GTCGGTTCCTTCTGCgtagacTCCGAGCGTCTTTCCG was identified from a clinically relevant transcript of 

DGUOK and the appropriate ZFN was obtained from Sigma Aldrich (CompoZr Custom ZFN Service). This was 

injected into the pronucleus of a fertilized one-cell embryo. These microinjected embryos were then implanted 

into a “pseudo-pregnant” recipient female rat. This resulted in the generation of four characterized DGUOK rat 

knockout lines named SSdguokM1 SSdguokM2 SSdguokM3and SSdguokM4. Because of the rare potential for an off-target 

effect, where ZFNs cause double-strand breaks and mutations at undesired loci, we backcrossed and bred 

homozygote animals from these two lines (117). The “M1” line has a 31 base pair deletion after amino acid six 

leading to a premature stop codon, i.e., a polypeptide with 34 amino acids (the first 6 from the original protein 

sequence and 28 from the missense). Similarly, the “M2” line has a 37 base pair amino acid deletion after 

amino acid six. This frame-shift mutation would lead to a 42 amino acid polypeptide with only the first 6 amino 

acids consistent with the original protein sequence. 

The M3 line had a net 57bp frameshift deletion in exon 1 including the initiation codon which is predicted 

to lead to the use of an alternate start codon in exon 1 with a 5’ truncated protein devoid of the mitochondrial 

targeting sequence. The M4 line had an in-frame deletion of 9 nucleotides in the targeting sequence. This 
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strain does not have hepatic mtDNA depletion and, because of the adequacy of the first two models, was not 

further characterized.  

The generation of the animal model and all subsequent animal experiments were performed under 

approved Animal Use Application by the Institutional Animal Care and Use Committee (IACUC) of the Medical 

College of Wisonsin (protocols 2214 and 1764, respectively). 

 mtDNA assay. Real time analysis was performed as previously published and validated in humans (55, 

97, 112) using rat specific primers. DNA was extracted using Qiagen Blood Core Kit #158389 and quantified 

using the Quant-iT PicoGreen double stranded DNA kit (Invitrogen) and a Varioskan plate reader (Thermo 

Fisher) in 96 well format. DNA is diluted to a concentration falling with in efficiency range of the assay 0.125-4 

ng/l. qPCR was carried out on 10 l samples, each containing between 0.35 and 12 ng of extracted DNA, 5 

pmol of each forward and reverse primer, and 5 l iTAQ SYBR Green Supermix with ROX (BioRad). The 

mitochondrial genome-targeted rat-specific primers used were tRNALeu F: GGTTATTAGGGTGGCAGAGC 

and tRNALeu R:GGAAGGCCATGGCAATTAAG. Nuclear primers, targeted to the ActB coding region, were 

ActB F:TACCACTGGCATTGTGATGG and ActB R: ACGCTCGGTCAGGATCTTC. The Basic Local Alignment 

Search Tool (National Center for Biotechnology Information) was used to show that primers hybridized to 

unique sequences in Rattus norvegicus. The real-time qPCR cycling conditions were (i) 50°C for 2 min, (ii) 

95°C for 10 min, (iii) 45 cycles of 15 seconds at 95°C, and (iv) a combined 62°C anneal/extension for 30 

seconds. Upon completion of 45 cycles, a pre-programmed dissociation step was carried out by one cycle of 

95°C for 15 seconds, 50°C for 15 seconds and 95°C for 15 seconds. Real-time fluorescence was measured 

and analyzed on a 7900HT Fast Real-Time PCR system (Applied Biosystems, Foster City, CA) using SDS 

V2.3 software. All samples were assayed in triplicate. The relative mtDNA copy number was determined from 

the threshold difference between the averages of each set of triplicate reactions.  

 Histology. A portion of each heart, lung, liver, spleen, and kidney from 4 wild-type SS rats and 5 

SSdguokM2DGUOK rats at 11 months of age was fixed in formalin for histological analysis. Fixed tissue was 

paraffin-embedded, sectioned, and stained with hematoxylin and eosin (H&E) using standard techniques. To 

evaluate possible liver fibrosis, sections of liver were also stained using Masson trichrome stain using standard 

techniques. For evaluation of muscle pathology, a quadriceps muscle from each animal was frozen in 

isopentane at -78.5 C, and 8 m cryosections were stained for H&E, Gomori trichrome, reduced nicotinamide 
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adenine dinucleotide (NADH), cytochrome oxidase (COX), and succinate dehydrogenase (SDH) using 

standard techniques.   

 Protein immunoblot (western blot). Protein homogenates prepared from the quadriceps muscle were 

evaluated for mitochondrial electron transport chain complex expression using standard western blot 

techniques (119). Transferred proteins were probed with a MitoProfile Total OXPHOS Blue Native WB 

Antibody Cocktail (MitoSciences #MS603, Abcam, Cambridge, MA), which includes antibodies against 

mitochondrial respiratory chain complexes I-V, and visualized using enhanced chemiluminescence. 

Quantification was performed using ImageJ version 1.44p and statistics were evaluated using Student’s t-test. 

 Electron transport chain activity assay. Electron transport chain activity assays were carried out on 

frozen rat muscle and liver (n = 6 for controls and n = 5 for DGUOK rats) according to protocols previously 

described in detail (120, 121) with the modification that the linear initial velocity in the first minute was 

determined for Complex III, instead of a formal rate constant, due to the lower activity compared to Complexes 

I, II and IV. The activities of Complexes I - IV were normalized for mitochondrial content by dividing by citrate 

synthase activity. The results of electron transport chain activity assays are not normally distributed but 

become so after transformation to their natural logarithms. Results are expressed as average values and the 

standard error of the mean. Significance is expressed by the non-parametric Mann-Whitney U test on the raw 

data and by Student's t-test of the logarithmically transformed data. Blue native PAGE analysis with in-gel 

activity staining was carried out as previously described (121-123). This allowed the identification of decreased 

synthesis of mitochondrial subunits (124).  

 EPR spectroscopy. Fresh tissue samples for EPR were rapidly extruded into 3 mm diameter EPR tubes 

and frozen in liquid nitrogen within 90 s of harvest (we have found that tissue can be frozen much more rapidly 

than dilute aqueous solutions and with much reduced risk of the EPR tube breaking). Samples entirely filled 

the active length of the EPR resonator. EPR spectra were recorded on a Bruker EleXsys E600 spectrometer 

equipped with a Super-X microwave bridge with integrated microwave counter, an ER4112SHQ resonant 

cavity operating at 9.38 GHz, and an Oxford Instruments ESR900 helium flow cryostat and ITC503 

temperature controller. Spectra were recorded with 10 G magnetic field modulation at 100 kHz and this 

modulation amplitude determined the spectral resolution. Microwave powers and temperatures are given in the 

figure legends. Scans of 4096 points, 8000 G field envelope and 3 min duration were averaged over 60 - 180 
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min to provide the final spectrum. A background spectrum collected on frozen water was subtracted from rat 

tissue spectra. Experimental spectra were modeled by fitting a library of computed spectra corresponding to 

the mitochondrial respiratory chain centers and the [3Fe4S] cluster of aconitase (69), using a Levenberg-

Marquardt algorithm to minimize 2 (IGOR Pro v. 6.32A, Wavemetrics, Lake Oswego, OR). The contributions 

of each component were constrained to  0. Correlation matrices indicated strong interdependencies 

(correlation coefficients ~ 0.7) of contributions from the pairs of signals (i) Complex II S3 3Fe4S and aconitase 

3Fe4S, and (ii) Complex I N1b and N2 FeS clusters. N1b and N2 could not be deconvoluted and only the 

overall contribution from N1b + N2 is given, whereas S3 and aconitase were deconvoluted by the use of two 

temperatures (69). Computed spectra of the individual components were calculated with XSophe (Bruker 

Biospin; (125, 126)) using spin Hamiltonian parameters from the literature (69-79), and computed spectra were 

normalized for the intensity of ".dH (i.e. the first integral of the EPR absorption, or so-called "double-

integrated spectrum") prior to fitting to the experimental data. 

 

 

Results. 

 Recapitulation of mtDNA depletion in DGUOK rat. To evaluate the phenotype, three M2, four M1 and 

six SS 8-week-old females were sacrificed and tissue harvested. DNA was extracted and subject to qPCR 

evaluation using validated rat-specific primers, but otherwise as previously described (112). This method 

demonstrates an approximately 90% reduction in hepatic mtDNA content (Figure 1). This reduction is similar 

to the 80–90% reduction in hepatic mtDNA seen in humans with this disorder (112). Similarly, a 60–80% 

reduction in splenic DNA content was observed (100). The situation was less clear in muscle; while M1 rats 

exhibited about 60 % depletion in mtDNA, the mtDNA level in the M2 rat was indistinguishable from that in 

wild-type. Consequently mtDNA content was assessed in sections of the same tissue that was used for 

Histology, ETC and EPR assays. This demonstrates no significant difference in mtDNA content in skeletal 

muscle, regardless of predominant oxidative fiber type (Table S1).   

 Pathology of the DGUOK rat. A pathological analysis was performed on 4 wild-type and 5 DGUOK rats 

at approximately 11 months of age, including the histological evaluation of heart, lung, liver, spleen, kidney, 

and muscle.  H&E-stained sections of heart, lung, liver, spleen, and kidney revealed no apparent differences in 
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the organ histology when comparing wild-type and DGUOK rats.  Liver fibrosis was further evaluated using 

Masson trichrome staining, which also showed no evident differences between wild-type and DGUOK livers. In 

contrast, there were marked differences on oxidative enzyme staining when comparing the quadriceps 

muscles of wild-type and DGUOK rats (Figure 2).  While pathological differences were not apparent on H&E 

staining, there were numerous fibers that showed negative staining on both cytochrome oxidase (COX) and 

succinate dehydrogenase (SDH) stains (Figure 2).  Large numbers (up to 20-30% of fibers) of these COX 

negative/SDH negative fibers were seen in all DGUOK rats, whereas they were essentially absent in all of the 

wild-type rat muscles examined.     

 Expression of respiratory chain complexes. Mitochondrial protein expression was found to be altered in 

quadriceps muscle of the 11 month old DGUOK rat (Figure 3). Specifically, the data indicated that Complex I 

was significantly under-expressed (54 % of wild-type; p = 0.05) and suggested that Complex III was also under 

expressed (47 % of wild-type; p = 0.12). The expression levels of Complexes II, IV & V were unchanged in 

DGUOK rat muscle. Varying, though generally low, amounts of an unidentified immunoreactive protein with Mr 

 30 kDa were also observed.  

 Electron chain transport assays. Significantly lower activities for Complexes I, III and IV were observed 

in DGUOK rat liver, corresponding to about 20 %, 7 % and 13 % of wild-type activity, respectively, whereas 

Complex II activities were statistically indistinguishable (Figure 4, Table 1). In DGUOK muscle, the activities of 

Complexes I and III were only 9 % and 20 % of wild-type, respectively, whereas Complex II and IV activities 

were essentially indistinguishable.     

 EPR spectroscopy. The EPR spectra at 12 K of liver, quadriceps muscle and heart from wild-type and 

DGUOK rats are shown in Figure 5. The signals are complex but some features are immediately identifiable 

and are labeled a - k in Figure 5. Feature a at g' ~ 6 is due to high-spin ferriheme; b at g' ~ 4 is due largely to 

Fe(III) in transferrin; a complex pattern extending upfield from c is due to Mn(II), which is prominent in liver but 

much less so in quadriceps muscle and not detectable in heart, and overlaps the signals from the respiratory 

chain iron sulfur clusters; the prominent feature at d is the so-called "g = 2.01" signal and is due to overlapping 

signals from the oxidized 3Fe4S clusters of Complex II and oxidatively-damaged aconitase; the signal at e, the 

so-called "g = 1.94" signal, is due to overlapping g2 resonances from reduced 2Fe2S and 4Fe4S clusters, 

primarily those from Complex I; the signals at f are the g3 resonances from Complex I N4 4Fe4S (lower field) 
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and Complex I N3 2Fe2S (higher field) and are overlaid on the highest field mI = 5/2 resonance of the mS = 1/2 

manifold of S = 5/2 Mn(II) (the latter is not clear in trace A but much more pronounced in trace B); the 

resonances labeled g are gx and gy of the rhombic high-spin ferriheme of catalase (88); the resonances around 

h are due to low-spin ferriheme; feature i is the g1 (gx) resonance of low-spin heme a of Complex IV; and k 

indicates the g1 (gx; lower field) and g3 (gz; higher field) resonances from the Rieske 2Fe2S cluster of Complex 

II. The broad EPR absorption in the liver spectra from about 2000 G is largely due to rapid-passage of the 

Mn(II) leading to an absorption-like signal that includes components from the mS = 3/2 and mS = 5/2 manifolds 

(127), along with some contribution from CuA of Complex IV. 

 Visual inspection of the spectra provides some limited information. Mn(II) is clearly elevated in DGUOK 

liver whereas the reduced Complex I FeS signals (e, f) are diminished. In DGUOK quadriceps muscle, the 

Complex I FeS signals and the Complex III Rieske signals are markedly diminished compared to wild-type. In 

both muscle and liver, the g = 2.01 signal (d) due to Complex II S3 and/or aconitase appears elevated in 

DGUOK compared to wild-type. To further investigate this phenomenon, spectra were recorded at 40 K 

(Figure 6) where the faster-relaxing S3 signal intensity is lowered relative to the more slowly relaxing 

aconitase signal. In liver, the difference in intensity of the g = 2.01 signal persists and we assign this as being 

due to a 25 % increase in the aconitase signal in DGUOK over wild-type. In quadriceps muscle at 40 K, the 

DGUOK signal is now smaller than the wild-type signal, indicating that the difference at 12 K is due to elevated 

amounts of oxidized Complex III S3 3Fe4S. Clear signals due to g1 (gx) of heme a of Complex IV were only 

observed in heart. The signals in liver and quadriceps were much broader and suggestive of a distribution of g-

values; this resonance position of this signal was found to be very sensitive to mutations in bacterial 

cytochrome c oxidase (128) and the apparent distribution of g1 values may reflect multiple environments in liver 

mitochondria. In liver, the signal from transferrin was elevated and that from catalase was depressed. 

Interestingly, no significant differences at all were observed between the EPR spectra of heart from wild-type 

and DGUOK rats. 

 For quantitative information we turned to computer simulation of the spectra. Figure 7 shows the g ~ 2 

region of the experimental spectra for liver (A, B), quadriceps muscle (E, F) and heart (I, J) from DGUOK and 

wild-type rats. In each case, fits to the library of computed spectra were generated. As we are particularly 

interested in the differences between wild-type and DGUOK, difference spectra (DGUOK minus wild-type) of 
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the experimental data (C, G and K for liver, muscle and heart, respectively) and the computed fits (D and H for 

liver and muscle; no significant difference was observed between the fits to wild-type and DGUOK heart) are 

presented. The experimental and computed difference spectra match very well and details of the fits are given 

in Table 2/Table S2. From the fit parameters, and using the dual temperature study to resolve the S3 and 

aconitase 3Fe4S contributions, we calculated the fractional difference between the intensities of each of the 

components in the DGUOK and wild-type tissues, and the significant results are summarized in Figure 8. 

 

Discussion. 

 The aims of this work are to describe the DGUOK rat mitochondrial phenotype and evaluate it as a 

model for mitochondrial disease, and to apply EPR spectroscopy of tissue to enable an understanding of what 

happens at the electron level in tissue with mtDNA depletion. The DGUOK rat has a complex and tissue-

dependent mitochondrial phenotype. The DGUOK liver exhibited markedly lower mtDNA copy number, ~ 10 % 

of wild-type. However, EPR showed that Complex I FeS clusters were present at least 50 % as much as in 

wild-type, and signals from S1, S2, S3 and the Rieske FeS clusters indicated that Complexes II and III are 

expressed at the same level as in wild-type. The observation that the four EPR-detectable FeS cluster signals 

are depleted by the same amounts, despite very different redox potentials, and that signal intensities from both 

the S1-S2 pair and the Rieske cluster are indistinguishable from wild-type suggests that (i) the lowered 

Complex I signals are due to depressed expression or Fe incorporation, rather than an elevated redox potential, 

and (ii) the depleted Complex I complement therefore provides sufficient electrons to load the electron transfer 

chain. The aconitase 3Fe4S signal, a characteristic marker for oxidative stress (82), was elevated in DGUOK 

liver. Also, Mn(II), which is present at high levels in wild-type liver and is proposed to be additionally generated 

in response to oxidative stress (127), was doubled compared to wild-type. The activities of Complexes I, III and 

IV in DGUOK liver were very depressed compared to wild-type, and by far more that can be accounted for by 

expression levels. It is tempting to speculate that the oxidative stress identified by the aconitase and Mn(II) 

EPR signals is either a cause or consequence of the additional Complex I, II and IV dysfunction in DGUOK 

liver. The very low levels of Complexes III and IV activities explain the EPR observation that the electron 

transfer chain remains electron-rich, and the redox potential maintained close to the NADH:NAD midpoint 

potential, even though Complex I activity is also significantly depressed. The elevation of the EPR signal from 
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transferrin may indicate some hemorrhaging, and the depression of the catalase signal also suggests some 

disease or damage to the liver (129). 

 The mitochondrial phenotype in DGUOK quadriceps muscle is also complex. Consistent with muscle 

evaluated in humans with severe disease, protein expression levels for Complexes I and III were also ~ 50 % 

of wild-type, whereas Complexes II, IV and V were expressed at wild-type (108). However, in contrast to 

humans with severe disease, the mtDNA copy numbers for wild-type and M2 DGUOK were similar across all 

muscle groups [table S1]. This lack of difference in the muscle types may reflect variability in sampling, the 

milder phenotype in the rats or an underlying correction in muscle tissue for example by de novo purine 

synthesis or alternate salvage pathways. This data underscores the limited sensitivity of qPCR previously 

described in human muscle (112) and emphasizes the need to consider evaluation of liver specifically for 

depletion in this disease. 

Consistent with protein expression levels, EPR of DGUOK quadriceps muscle indicated that Complex I 

is present at  35 % of the wild-type level and Complex III at about 50 %. The EPR data for Complex II are 

revealing. The S3 cluster signal was twice as intense as in wild-type, yet the S1 and S2 clusters were 

diminished by a factor of two. This could indicate a catastrophic inability to correctly assemble Complex II or 

incorporate S1 and S2 but this would be expected to essentially abolish activity, and the elevation of S3 would 

require a doubling of Complex II expression. Neither phenomenon was observed. More likely, the changes in 

S1, S2 and S3 reflect a Complex II that experiences a significantly more oxidizing redox potential than in wild-

type mitochondria. This hypothesis is strongly supported by the very low Complex I electron transferring 

activity compared to the downstream activities of Complexes II, III and IV. Therefore, Complex II is drained of 

electrons and produces the EPR signature observed in DGUOK quadriceps muscle. This scenario also 

explains the lack of markers for oxidative stress in the EPR signature of DGUOK muscle. In the absence of 

Complex I activity, very few electrons enter the respiratory chain to begin with. Furthermore, the downstream 

components are in a more oxidized state and thus are primed to receive any electrons that do enter the 

respiratory chain, essentially acting as antioxidants. So, while Complex III dysfunction results in electron build-

up and oxidative stress in DGUOK liver, the lack of activity of Complex I and downstream oxidation of 

Complexes II - IV in muscle does not result in oxidative stress even though Complex III activity is as depressed 

in muscle as it is in liver. The only EPR marker observed for Complex IV in this study, the heme a signal, was 
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very weak and broad in muscle and was not significant in the fits. Nevertheless, visual examination suggests a 

comparable signal in wild-type and DGUOK, consistent with the significant Complex IV activity. What remains 

unclear is the reason(s) behind the low activities of Complexes I and III. Native PAGE provides no evidence for 

subunit depletion, and EPR does not indicate oxidative stress. 

 In contrast to liver and quadriceps muscle, the heart in the DGUOK rat appears entirely unaffected. The 

mtDNA copy numbers are normal and the EPR signals of wild-type and DGUOK heart are indistinguishable 

themselves and very similar to wild-type quadriceps muscle. Large EPR signals from Complex I N3 and N4, a 

large signal from Complex III Rieske 2Fe2S, a high ratio of the g = 1.94 and g = 2.01 signals, and a weak 

signal from Complex IV heme a all indicate a very reducing environment that is consistent with an active 

Complex I and a fully functioning respiratory chain that does not produce oxidative stress. 

 EPR is a unique tool in that it can interrogate the status of the mitochondrion at the time of freezing, in 

unprocessed viable biological samples. First, it is clear that in both liver and quadriceps muscle, EPR identified 

mitochondrial dysfunction in the DGUOK rat. Second, some mechanistic information on the DGUOK rat was 

obtained. In liver, the EPR results indicated that the reduced electron transfer chain activity of Complexes I is 

in part due to reduced expression but that the very low activity of Complex, III is not a consequence of reduced 

expression or Fe incorporation as FeS clusters. The retention of the Complex III Rieske 2Fe2S EPR signal in 

DGUOK liver indicates that Complex III is present at wild-type levels, incorporates the Rieske cluster, and 

electrons can progress through the respiratory chain at least as far as the Rieske cluster. The reason for 

Complex III inactivity remains unknown but appears to be downstream of the Rieske cluster. Oxidative stress 

may be important, and two independent markers for oxidative stress were identified, elevated aconitase 3Fe4S 

and Mn(II); two markers for liver damage were also identified, depressed catalase and elevated transferrin. In 

quadriceps muscle, EPR provides complementary information to the activity assays. The lack of Complex I 

activity and the EPR identification of oxidation of the three Complex II FeS clusters provides a rationale for the 

lack of any EPR markers for oxidative stress in muscle. A knowledge of whether oxidative stress is a 

consequence of mitochondrial disease, and in which tissues and why, is an important piece of information that 

may inform therapy choices.  

 

Conclusions. 
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The DGUOK rat capitulates major biochemical features observed in humans with DGUOK deficiency, 

specifically significantly reduced mtDNA content, reduced mitochondrial complex I, III and IV protein content 

and enzymatic activity in frozen liver.  EPR assessment of flash-frozen tissues has demonstrated dramatic 

differences in the mitochondrial electron transport chain status in situ compared with wild-type animals. The 

reproducibility and magnitude of these differences is encouraging given the relatively mild pathologic 

differences seen in the animals. It suggests that EPR may be able to reliably distinguish individuals with 

mitochondrial disease from distinct etiologies of muscle or liver disease in humans.   
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TISSUE 
Activity assayed 

1000 x Wild-type 

activity  citrate 
synthase activity 
 

1000 x DGUOK 

activity  citrate 
synthase activity 

Mann-Whitney 
U test p-value 

t-Test with 
transformed data 
p-value 

LIVER     

Complex I 230.08 ± 18.81 47.64 ± 9.53 0.008 0.002 

Complex II 991.9 ± 95.3  1291.6 ± 258.3 0.522 0.250 

Complex III 14.35 ± 0.80 1.02 ± 0.20 0.008 0.001 

Complex II - III 430.1 ± 32.6 129.3 ± 25.9 0.029 0.012 

Complex IV 137.54 ± 11.69 17.70 ± 3.54 0.014 0.002 

     

MUSCLE     

Complex I 108.1 ± 8.25 9.73 ± 4.25 0.008 0.015 

Complex II 278.1 ± 16.42 215.8 ± 18.41 0.522 0.093 

Complex III 3.43 ± 0.48 0.70 ± 0.18 0.036 0.025 

Complex II -III 263.7 ± 28.53 157.6 ± 15.36 1.00 0.070 

Complex IV 38.63 ± 5.60 53.93 ± 8.76 0.412 0.434 

 
Table 1. Results of electron transport chain assays of Complexes I - IV from muscle and liver from wild-type and 

DGUOK rats. 
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EPR Signal Liver 
W/T 

Liver 
DGUOK 
[ (%)]a 

Muscle 
W/T 

Muscle 
DGUOK 
[ (%)] 

Heartb 

CuA 47 ± 13 44 ± 15 
[NS]c 

9 ± 1 13 ± 1 
[+45] 

NDd 

Heme a 200 ± 50 100 ± 60 
[-50] 

ND ND 200 ± 30 

High-spin heme 116 ± 7 71 ± 9 
[-39] 

44 ± 1 31 ± 1 
[-30] 

183  3 

N1b + N2 26 ± 5 16 ± 5 
[-39] 

28.2 ± 0.2 7.4 ± 0.5 
[-74] 

111  1 

FeS N3 17 ± 8 8 ± 5 
[-53] 

16 ± 1 5.5 ± 0.7 
[-61] 

38  4 

FeS N4 41 ± 8 20 ± 6 
[-51] 

33 ± 1 14 ± 1 
[-59] 

108  4 

All Complex I FeS 84 ± 12 44 ± 9 
[-49] 

77 ± 1 26 ± 1 
[-66] 

257  6 

S3 + Acn 10.8 ± 1.6 15 ± 2 
[+37] 

1.3 ± 0.1 3.8 ± 0.1 

[+192] 
17  1 

FeS S1 27 ± 10 29 ± 13 
[NS] 

15 ± 1 8 ± 1 16 ± 5 

FeS S2 ND ND ND ND 60 ± 5 
S1 + S2 27 ± 10 29 ± 13 

[NS] 

15 ± 1 8 ± 1 
[-48] 

76 ± 7 

Rieske FeS 99 ± 11 98 ± 12 
[NS] 

37 ± 1 18 ± 1 
[-51] 

238 ± 5 

Mn(II) 295 ± 27 588 ± 32 
[+99] 

32 ± 3 20 ± 2 
[-35] 

ND 

 
Table 2. Fitting parameters for the EPR signals from spectra of liver and muscle tissue from wild-type and DGUOK rats. 

The absolute intensities of each species (or group of species) are shown for wild-type and DGUOK, along with the 

percentage differences between DGUOK and wild-type intensities in brackets. 

 

Footnotes. (a) Calculated as {[(DGUOK signal) - (wild-type signal)]  (wild-type signal)}  100. (b) Wild-type and 

DGUOK heart were indistinguishable. (c) Not significant. (d) None detected. 
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Figure 1. Absolute mtDNA content in DGUOK rats. The mtDNA copy numbers for eight week old M1 and M2 

DGUOK knockout rats compared with wild-type (SS) rats. The error bars indicate standard deviations for n = 6 (SS), n = 

4 (M1) and n = 3 (M2). 
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Figure 2: Skeletal muscle pathology in 11 month old WT and DGUOK rats.  Quadriceps muscles from DGUOK rats 

display little differences on H&E staining in comparison to WT littermates.  In contrast, staining for COX and SDH 

reveals numerous fibers in DGUOK rat muscle that are negative for both COX and SDH, whereas no such fibers were 

evident in WT rat muscle.  The bar at the bottom, right corresponds to 200 m. 
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Figure 3. Respiratory chain complex expression in DGUOK rat muscle. Western blots of mitochondrial electron 

transport chain complexes I-V and GAPDH from stripped membranes of quadriceps muscle from 11 month old wild-type 

and DGUOK rats are shown in the top panel. The results of quantitation of the respiratory chain complex bands are shown 

below, normalized for GAPDH expression. The error bars indicate standard errors for n = 4.  
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 Figure 4. Electron transport chain functional assays of Complexes I - IV. The functional activities of 

Complexes I - IV from liver and quadriceps muscle of DGUOK rat are shown, normalized for mitochondrial content (as 

citrate synthase activity) and expressed as percentages of activities from wild-type. Detailed results are given in Table 1 

(or S1). 
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Figure 5. 12 K EPR spectra from wild-type and DGUOK rat tissue. The spectra are from samples of A, wild-type rat 

liver; B, DGUOK rat liver; C, wild-type rat quadriceps muscle; D, DGUOK rat quadriceps muscle; E, wild-type rat heart; 

and F, DGUOK rat heart. In each case, the sample completely filled the part of the EPR tube that occupied the active 

region of the resonator. A & B shown x 1, C & D are shown x 2, and E & F shown x 0.5. Spectra were recorded at 12 K, 

2.5 mW power. The lower-case labels identify specific signals in the spectra: (a) high-spin axial ferriheme g; (b) 

transferrin non-heme Fe(III); (c) the mI = 
5
/2 line at the low-field extremity of the six-line Mn(II) hyperfine pattern; (d) 

overlapping signals from aconitase and S3 [3Fe4S] clusters; (e) overlapping g2 resonances from Complex I [2Fe2S] and 

[4Fe4S] clusters; (f) resolved g3 resonances from N4 and N3 clusters; (g) high-spin catalase gx and gy lines; (h) low-spin 

catalase resonances; (i) heme a g1; and (k) Rieske [2Fe2S] cluster g1 and g3 resonances. 

  



Mitochondrial dysfunction and EPR abnormalities in DGUOK deficient rats  Bennett et al 

 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 40 K EPR spectra from wild-type and DGUOK rat tissue. The spectra are from samples of A, wild-type rat 

liver (solid line) and DGUOK rat liver (dashed line); and B, wild-type rat quadriceps muscle (solid line) and DGUOK rat 

muscle (dashed line). Spectra were recorded at 40 K, 2.5 mW power.  
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Figure 7. Quantitative analysis of the 12 K EPR signals from wild-type and DGUOK rat tissues. Traces A, B, E, F, I 

and J show the g' ~ 2 region of the EPR spectra of A, wild-type rat liver; B, DGUOK rat liver; E, wild-type rat quadriceps 

muscle; F, DGUOK rat quadriceps muscle; I, wild-type rat heart; and J, DGUOK rat heart. Trace C is the difference 

spectrum obtained by subtraction of A from B, and is shown multiplied by a factor of two; likewise, G = 2(F - E) and K 

= 2(J - I). Trace D is a theoretical simulation of C generated by the subtraction of fits of A and B to model spectra of the 

paramagnetic species likely to be observed in the mitochondrion. Fitting parameters are presented in Table 2 (or S2). 

Similarly, trace H is a simulation of J from fits to E and F. No attempt was made to simulate K, as no significant 

differences were observed between fits to I and J. 
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Figure 8. Summary of EPR of DGUOK rat liver and muscle. A comparison of signal intensities is shown for some of 

the respiratory complex redox centers in liver and muscle from the DGUOK and wild-type rat. The standard errors were 

calculated from those of the fit parameters, presented in Table 2 (or S2). 
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Table S1 
In contrast to liver (n=5), mtDNA content in muscle tissue from 4 Wild Type (Dahl/SS) rats compared with 4 
DGUOK M2 rats demonstrates no significant difference. 
  

 WILD TYPE RAT DGUOK M2 RAT TTEST 

SOLEUS MUSCLE 1036 710 0.72 

GASTROCNEMIUS MUSCLE 910 571 0.31 

TRICEP MUSCLE 1270 418 0.25 

DELTOID MUSCLE 1043 1043 0.81 

LIVER 1981 187 0.0002 
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Abstract. 

A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion 

syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model 

recapitulates the pathologic and biochemical signatures of the human disease. The application of electron 

paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory 

chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is 

introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormality in situ 

and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result 

from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As 

EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the 

mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory 

chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory 

chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic 

pathophysiological studies of mitochondrial disease and strong potential as an additional diagnostic tool.  

 

 

Keywords. 

DGUOK, redox, oxidative, stress, mtDNA depletion, pathology 

 

Graphical abstract. 
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Highlights. 

EPR demonstrates marked signal changes in a rat with DGUOK deficiency that resembles human disease 

 

 

Abbreviations. 

COX, cytochrome oxidase; M2, deoxyguanosine kinase-deficient rat model; DGUOK, deoxyguanosine kinase; 

EPR (ESR), electron paramagnetic (spin) resonance; FeS, iron-sulfur (cluster); H&E, hematoxylin and eosin; 

MD, mitochondrial disease; MDS, mitochondrial DNA depletion syndrome; MPV17 mitochondrial inner 

membrane protein; mtDNA, mitochondrial DNA; NADH, reduced nicotinamide adenine dinucleotide; POLG, 



Mitochondrial dysfunction and EPR abnormalities in DGUOK deficient rats  Bennett et al 

 

4 

DNA polymerase γ; SDH, succinate dehydrogenase; TWINKLE, a mitochondrial DNA helicase encoded by 

chromosome 10, open reading frame 2 (also known as C10orf2) 
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Introduction. 

 Mitochondrial disease (MD) occurs where depletion of mitochondrial DNA (mtDNA) or mutations in 

mtDNA and/or nuclear DNA (nDNA) lead to altered mitochondrial function.(1-4) Altered activities of Complexes 

I – V have been identified and physiological consequences of mitochondrial respiratory chain defects include 

reduced metabolic capacity, reduced ATP synthesis, and increased oxidative and nitrosative stress.(5-15) 

Symptoms of MD are manifold and include weakness (from central nervous system, peripheral nerve, and/or 

skeletal muscle disease), pain, intolerance of some general anesthetics and anti-epileptic drugs, 

gastrointestinal disorders, ophthalmoplegia and/or visual failure, failure to thrive, cardiac and respiratory 

disease, liver disease, diabetes, seizures, sensorineural hearing loss, mental retardation, dementia, movement 

disorders, increased susceptibility to infection, and pregnancy loss.(1, 2, 16-38) Establishing diagnoses and 

understanding the pathophysiology of mitochondrial disease (MD) has proven extremely challenging because 

of the extraordinary range of clinical symptoms and testing abnormalities (39). MD is often suspected in early 

childhood from clinical differential diagnosis of patients with diseases involving the brain, muscle, or liver. 

Traditional methods for diagnosing MD include clinical presentation, family history, pathology, metabolic 

profiling, enzyme activity levels, electrophysiology, magnetic resonance imaging (MRI) of brain and magnetic 

resonance spectroscopy (MRS) of metabolites, and mtDNA analysis (3, 7, 31, 40-53). Additional indicators 

include observation of mitochondrial proliferation, abnormalities on muscle histology (e.g., ragged red fibers or 

succinate dehydrogenase-positive fibers) (41, 54), and abnormalities in electron microscopy (46, 55). However, 

muscle histology may be normal despite the presence of biochemical abnormalities in the tissue. The 

determination of whether MD is present in a given patient can be extremely complex, given that (i) 

mitochondrial function can be secondarily affected due to the disease processes in non-mitochondrial diseases, 

(ii) there can be extensive variability in the distribution of abnormal mitochondria within an individual patient, 

allowing a “false negative” testing profile to occur when tissues with mitochondrial abnormalities are not tested, 

and (iii) there are no uniform, definitive pathological abnormalities that distinguish all MD patients from patients 

with other disorders. Diagnosis may ultimately rely on the application of diagnostic algorithms to predict the 

likelihood of MD  (56, 57) but MD is currently an under-diagnosed disease (4, 58-64). 

 Mechanistic information on MD has largely arisen from mitochondrial electron transport chain 

component activity assays on the components, isolated from their native matrix from fresh or frozen tissue, or 
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from cultured cells. These assays are, like most clinical biochemical assays, performed under non-physiologic 

basal conditions and with very different substrate concentrations than are seen in-vivo. Complex interactions 

between the substrates of these assays and other cellular components can lead to erroneous results (65) 

though these problems can, in principle be, overcome with careful isolation of proteins or in-gel assays. Assays 

of activities outside of the intact mitochondrial environment cannot identify defects in mitochondrial membrane 

potential or coupling. In clinical practice, it has been found that the methodological variations, limitations and 

difficulties associated with the use of respiratory chain functional assays as a diagnostic method for MD has 

led to massive inter-laboratory variability in results (66). In alternative approaches, substrates are added to 

whole cells or isolated mitochondrial preparations, and either oxygen consumption or ATP generation is 

measured [reviewed in (67)]. While recognized as the current standard for mitochondrial testing there are, 

again, significant limitations. Most apparent is the requirement for viable functioning mitochondria, requiring cell 

preparation or mitochondrial isolation and testing to be carried out temporally, and therefore geographically, 

proximate to the biopsy. The process of isolating mitochondria from native tissue risks damage and places the 

organelle outside of a truly physiologic condition. Conversely, whole cell assays require permeabilization of the 

cell to the substrates and transport to the mitochondria. The potentially limited ability to get reagents to the site 

of action can lead to a loss of sensitivity and specificity. In all of the currently employed assays, the 

mitochondrial function is not assessed in its native-organ context in the human and the need persists for an 

assay that measures the functional ability of mitochondria in an intact tissue preserved in a state as close as 

possible to that in situ.  

 Electron paramagnetic (spin) resonance (EPR, ESR) is a technique that can provide unique insight into 

mitochondrial status. EPR detects and characterizes free radicals and many transition metal ions and clusters 

in biological systems by measuring the magnetic field dependence of the absorption of microwave radiation at 

a given frequency by the unpaired electrons residing in these species (68). The mitochondrial respiratory chain 

Complexes I - IV are particularly rich in transition metal-containing redox centers, with a complement of 21 

centers that include heme iron, copper, and [2Fe2S], [3Fe4S] and [4Fe4S] iron sulfur (FeS) clusters. Up to 18 

of these adopt EPR-detectable paramagnetic states in native mitochondria and are readily observed at 

temperatures close to liquid helium (10 - 40 K) (69). The spin-Hamiltonian parameters, midpoint potentials and 

relaxation behavior of these centers have been reasonably well characterized (69-87), along with some other 
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tissue-specific signals from transferrin, ceruloplasmin, and catalase (88-90). Specific applications of EPR to 

mitochondria have included detection of an irreversible deficiency in Complex I FeS clusters in iron-deficient 

rats (91), heme-nitrosyl in substantia nigra of Parkinson's diseased brain (92), chromium-dependent inhibition 

of Complexes I & II and aconitase (93), cardio- and neuro-protection against doxorubicin (80), prophylaxis 

against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in a Parkinson's mouse model (82), the differential 

sensitivity of aconitase  and FeS clusters from Complexes I & III to oxidative and nitrosative stress in heart (94), 

and the sensitivity of Complex III FeS clusters in aging heart to ischemia (95). However, despite these 

successes in mechanistic studies, the authors are unaware of any direct application of EPR for functional 

pathophysiologic studies in humans or whole animal models with primary mitochondrial disease; the closest 

analog is a study in which a comparison of EPR signals from muscle biopsies of sepsis patients indicated 

significant depletion of Complex I FeS signals in those who died compared to survivors (86, 96). 

 One group of MD that has been recently well-characterized and suggests itself as a promising model 

for evaluation of new pathophysiologic methodologies is the mitochondrial DNA (mtDNA) depletion syndromes 

(MDS). MDS comprises a genetically and clinically heterogeneous group of autosomal recessive diseases 

characterized by a reduction in tissue-specific mtDNA copy number. This reduction is a result of molecular 

defects in either the genes responsible for mtDNA biogenesis, or those required for the maintenance of 

deoxynucleotide pools or mtDNA integrity (97-99). The loss of mtDNA can lead to a variety of clinical 

presentations that are dependent on the gene involved and the nature of the mutation. Depletion of mtDNA is 

the most common cause of multi-systemic oxidative phosphorylation defects (100), with deoxyguanosine 

kinase (DGUOK) deficiency being the most frequent cause. Death commonly results from liver failure (26, 97, 

101, 102), which may occur in the context of natural disease progression, exposure to sodium valproate (103-

105) or complications of viral infections such as influenza (55, 106). Less severe attenuation of DGUOK 

function may result in a susceptibility to isolated liver failure (97, 107, 108) or a myopathic presentation of 

DGUOK deficiency (109). Some cases with milder mutations have required liver transplantation, with its 

attendant complications, and may subsequently develop myopathy (97, 108). Over the preceding 5 years, we 

have developed an accurate method for assay of tissue-specific mitochondrial DNA content using quantitative 

real-time polymerase chain reaction (qPCR) that has led to accurate retrospective modeling and prospective 

diagnosis of patients with hepatic mtDNA depletion (55, 110-116). This is accepted as the clinical standard for 
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diagnosis of mtDNA depletion (54). The development of a robust diagnosis for MDS and the detailed 

characterization of DGUOK deficiency, in particular, suggested to us that an animal model of DGUOK 

deficiency would be of great value in developing and evaluating the potential of new diagnostic and 

pathophysiologic techniques for MD. 

 In the present work, we aim to introduce EPR of tissue samples at cryogenic temperatures as a 

mechanistic tool for MD. We have developed a rat model of DGUOK deficiency (referred to by the trivial name 

"DGUOK") that exhibits characteristic biomarkers, and we have applied standard biochemical and pathological 

tests along with EPR. The goals of this work are to characterize the DGUOK rat in terms of mitochondrial 

dysfunction and pathological outcome, and to evaluate EPR as a new and additional technique in an integrated 

characterization of MD. 

 

Materials and Methods. 

The DGUOK rat model of DGUOK deficiency. Previously described zinc-finger nuclease (ZFN) 

technology was employed (117, 118). A preferred binding/cutting site of 

GTCGGTTCCTTCTGCgtagacTCCGAGCGTCTTTCCG was identified from a clinically relevant transcript of 

DGUOK and the appropriate ZFN was obtained from Sigma Aldrich (CompoZr Custom ZFN Service). This was 

injected into the pronucleus of a fertilized one-cell embryo. These microinjected embryos were then implanted 

into a “pseudo-pregnant” recipient female rat. This resulted in the generation of four characterized DGUOK rat 

knockout lines named SSdguokM1 SSdguokM2 SSdguokM3and SSdguokM4. Because of the rare potential for an off-target 

effect, where ZFNs cause double-strand breaks and mutations at undesired loci, we backcrossed and bred 

homozygote animals from these two lines (117). The “M1” line has a 31 base pair deletion after amino acid six 

leading to a premature stop codon, i.e., a polypeptide with 34 amino acids (the first 6 from the original protein 

sequence and 28 from the missense). Similarly, the “M2” line has a 37 base pair amino acid deletion after 

amino acid six. This frame-shift mutation would lead to a 42 amino acid polypeptide with only the first 6 amino 

acids consistent with the original protein sequence. 

The M3 line had a net 57bp frameshift deletion in exon 1 including the initiation codon which is predicted 

to lead to the use of an alternate start codon in exon 1 with a 5’ truncated protein devoid of the mitochondrial 

targeting sequence. The M4 line had an in-frame deletion of 9 nucleotides in the targeting sequence. This 
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strain does not have hepatic mtDNA depletion and, because of the adequacy of the first two models, was not 

further characterized.  

The generation of the animal model and all subsequent animal experiments were performed under 

approved Animal Use Application by the Institutional Animal Care and Use Committee (IACUC) of the Medical 

College of Wisonsin (protocols 2214 and 1764, respectively). 

 mtDNA assay. Real time analysis was performed as previously published and validated in humans (55, 

97, 112) using rat specific primers. DNA was extracted using Qiagen Blood Core Kit #158389 and quantified 

using the Quant-iT PicoGreen double stranded DNA kit (Invitrogen) and a Varioskan plate reader (Thermo 

Fisher) in 96 well format. DNA is diluted to a concentration falling with in efficiency range of the assay 0.125-4 

ng/l. qPCR was carried out on 10 l samples, each containing between 0.35 and 12 ng of extracted DNA, 5 

pmol of each forward and reverse primer, and 5 l iTAQ SYBR Green Supermix with ROX (BioRad). The 

mitochondrial genome-targeted rat-specific primers used were tRNALeu F: GGTTATTAGGGTGGCAGAGC 

and tRNALeu R:GGAAGGCCATGGCAATTAAG. Nuclear primers, targeted to the ActB coding region, were 

ActB F:TACCACTGGCATTGTGATGG and ActB R: ACGCTCGGTCAGGATCTTC. The Basic Local Alignment 

Search Tool (National Center for Biotechnology Information) was used to show that primers hybridized to 

unique sequences in Rattus norvegicus. The real-time qPCR cycling conditions were (i) 50°C for 2 min, (ii) 

95°C for 10 min, (iii) 45 cycles of 15 seconds at 95°C, and (iv) a combined 62°C anneal/extension for 30 

seconds. Upon completion of 45 cycles, a pre-programmed dissociation step was carried out by one cycle of 

95°C for 15 seconds, 50°C for 15 seconds and 95°C for 15 seconds. Real-time fluorescence was measured 

and analyzed on a 7900HT Fast Real-Time PCR system (Applied Biosystems, Foster City, CA) using SDS 

V2.3 software. All samples were assayed in triplicate. The relative mtDNA copy number was determined from 

the threshold difference between the averages of each set of triplicate reactions.  

 Histology. A portion of each heart, lung, liver, spleen, and kidney from 4 wild-type SS rats and 5 

SSdguokM2DGUOK rats at 11 months of age was fixed in formalin for histological analysis. Fixed tissue was 

paraffin-embedded, sectioned, and stained with hematoxylin and eosin (H&E) using standard techniques. To 

evaluate possible liver fibrosis, sections of liver were also stained using Masson trichrome stain using standard 

techniques. For evaluation of muscle pathology, a quadriceps muscle from each animal was frozen in 

isopentane at -78.5 C, and 8 m cryosections were stained for H&E, Gomori trichrome, reduced nicotinamide 
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adenine dinucleotide (NADH), cytochrome oxidase (COX), and succinate dehydrogenase (SDH) using 

standard techniques.   

 Protein immunoblot (western blot). Protein homogenates prepared from the quadriceps muscle were 

evaluated for mitochondrial electron transport chain complex expression using standard western blot 

techniques (119). Transferred proteins were probed with a MitoProfile Total OXPHOS Blue Native WB 

Antibody Cocktail (MitoSciences #MS603, Abcam, Cambridge, MA), which includes antibodies against 

mitochondrial respiratory chain complexes I-V, and visualized using enhanced chemiluminescence. 

Quantification was performed using ImageJ version 1.44p and statistics were evaluated using Student’s t-test. 

 Electron transport chain activity assay. Electron transport chain activity assays were carried out on 

frozen rat muscle and liver (n = 6 for controls and n = 5 for DGUOK rats) according to protocols previously 

described in detail (120, 121) with the modification that the linear initial velocity in the first minute was 

determined for Complex III, instead of a formal rate constant, due to the lower activity compared to Complexes 

I, II and IV. The activities of Complexes I - IV were normalized for mitochondrial content by dividing by citrate 

synthase activity. The results of electron transport chain activity assays are not normally distributed but 

become so after transformation to their natural logarithms. Results are expressed as average values and the 

standard error of the mean. Significance is expressed by the non-parametric Mann-Whitney U test on the raw 

data and by Student's t-test of the logarithmically transformed data. Blue native PAGE analysis with in-gel 

activity staining was carried out as previously described (121-123). This allowed the identification of decreased 

synthesis of mitochondrial subunits (124).  

 EPR spectroscopy. Fresh tissue samples for EPR were rapidly extruded into 3 mm diameter EPR tubes 

and frozen in liquid nitrogen within 90 s of harvest (we have found that tissue can be frozen much more rapidly 

than dilute aqueous solutions and with much reduced risk of the EPR tube breaking). Samples entirely filled 

the active length of the EPR resonator. EPR spectra were recorded on a Bruker EleXsys E600 spectrometer 

equipped with a Super-X microwave bridge with integrated microwave counter, an ER4112SHQ resonant 

cavity operating at 9.38 GHz, and an Oxford Instruments ESR900 helium flow cryostat and ITC503 

temperature controller. Spectra were recorded with 10 G magnetic field modulation at 100 kHz and this 

modulation amplitude determined the spectral resolution. Microwave powers and temperatures are given in the 

figure legends. Scans of 4096 points, 8000 G field envelope and 3 min duration were averaged over 60 - 180 
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min to provide the final spectrum. A background spectrum collected on frozen water was subtracted from rat 

tissue spectra. Experimental spectra were modeled by fitting a library of computed spectra corresponding to 

the mitochondrial respiratory chain centers and the [3Fe4S] cluster of aconitase (69), using a Levenberg-

Marquardt algorithm to minimize 2 (IGOR Pro v. 6.32A, Wavemetrics, Lake Oswego, OR). The contributions 

of each component were constrained to  0. Correlation matrices indicated strong interdependencies 

(correlation coefficients ~ 0.7) of contributions from the pairs of signals (i) Complex II S3 3Fe4S and aconitase 

3Fe4S, and (ii) Complex I N1b and N2 FeS clusters. N1b and N2 could not be deconvoluted and only the 

overall contribution from N1b + N2 is given, whereas S3 and aconitase were deconvoluted by the use of two 

temperatures (69). Computed spectra of the individual components were calculated with XSophe (Bruker 

Biospin; (125, 126)) using spin Hamiltonian parameters from the literature (69-79), and computed spectra were 

normalized for the intensity of ".dH (i.e. the first integral of the EPR absorption, or so-called "double-

integrated spectrum") prior to fitting to the experimental data. 

 

 

Results. 

 Recapitulation of mtDNA depletion in DGUOK rat. To evaluate the phenotype, three M2, four M1 and 

six SS 8-week-old females were sacrificed and tissue harvested. DNA was extracted and subject to qPCR 

evaluation using validated rat-specific primers, but otherwise as previously described (112). This method 

demonstrates an approximately 90% reduction in hepatic mtDNA content (Figure 1). This reduction is similar 

to the 80–90% reduction in hepatic mtDNA seen in humans with this disorder (112). Similarly, a 60–80% 

reduction in splenic DNA content was observed (100). The situation was less clear in muscle; while M1 rats 

exhibited about 60 % depletion in mtDNA, the mtDNA level in the M2 rat was indistinguishable from that in 

wild-type. Consequently mtDNA content was assessed in sections of the same tissue that was used for 

Histology, ETC and EPR assays. This demonstrates no significant difference in mtDNA content in skeletal 

muscle, regardless of predominant oxidative fiber type (Table S1).   

 Pathology of the DGUOK rat. A pathological analysis was performed on 4 wild-type and 5 DGUOK rats 

at approximately 11 months of age, including the histological evaluation of heart, lung, liver, spleen, kidney, 

and muscle.  H&E-stained sections of heart, lung, liver, spleen, and kidney revealed no apparent differences in 
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the organ histology when comparing wild-type and DGUOK rats.  Liver fibrosis was further evaluated using 

Masson trichrome staining, which also showed no evident differences between wild-type and DGUOK livers. In 

contrast, there were marked differences on oxidative enzyme staining when comparing the quadriceps 

muscles of wild-type and DGUOK rats (Figure 2).  While pathological differences were not apparent on H&E 

staining, there were numerous fibers that showed negative staining on both cytochrome oxidase (COX) and 

succinate dehydrogenase (SDH) stains (Figure 2).  Large numbers (up to 20-30% of fibers) of these COX 

negative/SDH negative fibers were seen in all DGUOK rats, whereas they were essentially absent in all of the 

wild-type rat muscles examined.     

 Expression of respiratory chain complexes. Mitochondrial protein expression was found to be altered in 

quadriceps muscle of the 11 month old DGUOK rat (Figure 3). Specifically, the data indicated that Complex I 

was significantly under-expressed (54 % of wild-type; p = 0.05) and suggested that Complex III was also under 

expressed (47 % of wild-type; p = 0.12). The expression levels of Complexes II, IV & V were unchanged in 

DGUOK rat muscle. Varying, though generally low, amounts of an unidentified immunoreactive protein with Mr 

 30 kDa were also observed.  

 Electron chain transport assays. Significantly lower activities for Complexes I, III and IV were observed 

in DGUOK rat liver, corresponding to about 20 %, 7 % and 13 % of wild-type activity, respectively, whereas 

Complex II activities were statistically indistinguishable (Figure 4, Table 1). In DGUOK muscle, the activities of 

Complexes I and III were only 9 % and 20 % of wild-type, respectively, whereas Complex II and IV activities 

were essentially indistinguishable.     

 EPR spectroscopy. The EPR spectra at 10 K12 K of liver, quadriceps muscle and heart from wild-type 

and DGUOK rats are shown in Figure 5. The signals are complex but some features are immediately 

identifiable and are labeled a - k in Figure 5. Feature a at g' ~ 6 is due to high-spin ferriheme; b at g' ~ 4 is due 

largely to Fe(III) in transferrin; a complex pattern extending upfield from c is due to Mn(II), which is prominent in 

liver but much less so in quadriceps muscle and not detectable in heart, and overlaps the signals from the 

respiratory chain iron sulfur clusters; the prominent feature at d is the so-called "g = 2.01" signal and is due to 

overlapping signals from the oxidized 3Fe4S clusters of Complex II and oxidatively-damaged aconitase; the 

signal at e, the so-called "g = 1.94" signal, is due to overlapping g2 resonances from reduced 2Fe2S and 

4Fe4S clusters, primarily those from Complex I; the signals at f are the g3 resonances from Complex I N4 
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4Fe4S (lower field) and Complex I N3 2Fe2S (higher field) and are overlaid on the highest field mI = 5/2 

resonance of the mS = 1/2 manifold of S = 5/2 Mn(II) (the latter is not clear in trace A but much more pronounced 

in trace B); the resonances labeled g are gx and gy of the rhombic high-spin ferriheme of catalase (88); the 

resonances around h are due to low-spin ferriheme; feature i is the g1 (gx) resonance of low-spin heme a of 

Complex IV; and k indicates the g1 (gx; lower field) and g3 (gz; higher field) resonances from the Rieske 2Fe2S 

cluster of Complex II. The broad EPR absorption in the liver spectra from about 2000 G is largely due to rapid-

passage of the Mn(II) leading to an absorption-like signal that includes components from the mS = 3/2 and mS = 

5/2 manifolds (127), along with some contribution from CuA of Complex IV. 

 Visual inspection of the spectra provides some limited information. Mn(II) is clearly elevated in DGUOK 

liver whereas the reduced Complex I FeS signals (e, f) are diminished. In DGUOK quadriceps muscle, the 

Complex I FeS signals and the Complex III Rieske signals are markedly diminished compared to wild-type. In 

both muscle and liver, the g = 2.01 signal (d) due to Complex II S3 and/or aconitase appears elevated in 

DGUOK compared to wild-type. To further investigate this phenomenon, spectra were recorded at 40 K 

(Figure 6) where the faster-relaxing S3 signal intensity is lowered relative to the more slowly relaxing 

aconitase signal. In liver, the difference in intensity of the g = 2.01 signal persists and we assign this as being 

due to a 25 % increase in the aconitase signal in DGUOK over wild-type. In quadriceps muscle at 40 K, the 

DGUOK signal is now smaller than the wild-type signal, indicating that the difference at 10 K12 K is due to 

elevated amounts of oxidized Complex III S3 3Fe4S. Clear signals due to g1 (gx) of heme a of Complex IV 

were only observed in heart. The signals in liver and quadriceps were much broader and suggestive of a 

distribution of g-values; this resonance position of this signal was found to be very sensitive to mutations in 

bacterial cytochrome c oxidase (128) and the apparent distribution of g1 values may reflect multiple 

environments in liver mitochondria. In liver, the signal from transferrin was elevated and that from catalase was 

depressed. Interestingly, no significant differences at all were observed between the EPR spectra of heart from 

wild-type and DGUOK rats. 

 For quantitative information we turned to computer simulation of the spectra. Figure 7 shows the g ~ 2 

region of the experimental spectra for liver (A, B), quadriceps muscle (E, F) and heart (I, J) from DGUOK and 

wild-type rats. In each case, fits to the library of computed spectra were generated. As we are particularly 

interested in the differences between wild-type and DGUOK, difference spectra (DGUOK minus wild-type) of 
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the experimental data (C, G and K for liver, muscle and heart, respectively) and the computed fits (D and H for 

liver and muscle; no significant difference was observed between the fits to wild-type and DGUOK heart) are 

presented. The experimental and computed difference spectra match very well and details of the fits are given 

in Table 2/Table S2. From the fit parameters, and using the dual temperature study to resolve the S3 and 

aconitase 3Fe4S contributions, we calculated the fractional difference between the intensities of each of the 

components in the DGUOK and wild-type tissues, and the significant results are summarized in Figure 8. 

 

Discussion. 

 The aims of this work are to describe the DGUOK rat mitochondrial phenotype and evaluate it as a 

model for mitochondrial disease, and to apply EPR spectroscopy of tissue to enable an understanding of what 

happens at the electron level in tissue with mtDNA depletion. The DGUOK rat has a complex and tissue-

dependent mitochondrial phenotype. The DGUOK liver exhibited markedly lower mtDNA copy number, ~ 10 % 

of wild-type. However, EPR showed that Complex I FeS clusters were present at least 50 % as much as in 

wild-type, and signals from S1, S2, S3 and the Rieske FeS clusters indicated that Complexes II and III are 

expressed at the same level as in wild-type. The observation that the four EPR-detectable FeS cluster signals 

are depleted by the same amounts, despite very different redox potentials, and that signal intensities from both 

the S1-S2 pair and the Rieske cluster are indistinguishable from wild-type suggests that (i) the lowered 

Complex I signals are due to depressed expression or Fe incorporation, rather than an elevated redox potential, 

and (ii) the depleted Complex I complement therefore provides sufficient electrons to load the electron transfer 

chain. The aconitase 3Fe4S signal, a characteristic marker for oxidative stress (82), was elevated in DGUOK 

liver. Also, Mn(II), which is present at high levels in wild-type liver and is proposed to be additionally generated 

in response to oxidative stress (127), was doubled compared to wild-type. The activities of Complexes I, III and 

IV in DGUOK liver were very depressed compared to wild-type, and by far more that can be accounted for by 

expression levels. It is tempting to speculate that the oxidative stress identified by the aconitase and Mn(II) 

EPR signals is either a cause or consequence of the additional Complex I, II and IV dysfunction in DGUOK 

liver. The very low levels of Complexes III and IV activities explain the EPR observation that the electron 

transfer chain remains electron-rich, and the redox potential maintained close to the NADH:NAD midpoint 

potential, even though Complex I activity is also significantly depressed. The elevation of the EPR signal from 
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transferrin may indicate some hemorrhaging, and the depression of the catalase signal also suggests some 

disease or damage to the liver (129). 

 The mitochondrial phenotype in DGUOK quadriceps muscle is also complex. Consistent with muscle 

evaluated in humans with severe disease, protein expression levels for Complexes I and III were also ~ 50 % 

of wild-type, whereas Complexes II, IV and V were expressed at wild-type (108). However, in contrast to 

humans with severe disease, the mtDNA copy numbers for wild-type and M2 DGUOK were similar across all 

muscle groups [table S1]. This lack of difference in the muscle types may reflect variability in sampling, the 

milder phenotype in the rats or an underlying correction in muscle tissue for example by de novo purine 

synthesis or alternate salvage pathways. This data underscores the limited sensitivity of qPCR previously 

described in human muscle (112) and emphasizes the need to consider evaluation of liver specifically for 

depletion in this disease. 

Consistent with protein expression levels, EPR of DGUOK quadriceps muscle indicated that Complex I 

is present at  35 % of the wild-type level and Complex III at about 50 %. The EPR data for Complex II are 

revealing. The S3 cluster signal was twice as intense as in wild-type, yet the S1 and S2 clusters were 

diminished by a factor of two. This could indicate a catastrophic inability to correctly assemble Complex II or 

incorporate S1 and S2 but this would be expected to essentially abolish activity, and the elevation of S3 would 

require a doubling of Complex II expression. Neither phenomenon was observed. More likely, the changes in 

S1, S2 and S3 reflect a Complex II that experiences a significantly more oxidizing redox potential than in wild-

type mitochondria. This hypothesis is strongly supported by the very low Complex I electron transferring 

activity compared to the downstream activities of Complexes II, III and IV. Therefore, Complex II is drained of 

electrons and produces the EPR signature observed in DGUOK quadriceps muscle. This scenario also 

explains the lack of markers for oxidative stress in the EPR signature of DGUOK muscle. In the absence of 

Complex I activity, very few electrons enter the respiratory chain to begin with. Furthermore, the downstream 

components are in a more oxidized state and thus are primed to receive any electrons that do enter the 

respiratory chain, essentially acting as antioxidants. So, while Complex III dysfunction results in electron build-

up and oxidative stress in DGUOK liver, the lack of activity of Complex I and downstream oxidation of 

Complexes II - IV in muscle does not result in oxidative stress even though Complex III activity is as depressed 

in muscle as it is in liver. The only EPR marker observed for Complex IV in this study, the heme a signal, was 
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very weak and broad in muscle and was not significant in the fits. Nevertheless, visual examination suggests a 

comparable signal in wild-type and DGUOK, consistent with the significant Complex IV activity. What remains 

unclear is the reason(s) behind the low activities of Complexes I and III. Native PAGE provides no evidence for 

subunit depletion, and EPR does not indicate oxidative stress. 

 In contrast to liver and quadriceps muscle, the heart in the DGUOK rat appears entirely unaffected. The 

mtDNA copy numbers are normal and the EPR signals of wild-type and DGUOK heart are indistinguishable 

themselves and very similar to wild-type quadriceps muscle. Large EPR signals from Complex I N3 and N4, a 

large signal from Complex III Rieske 2Fe2S, a high ratio of the g = 1.94 and g = 2.01 signals, and a weak 

signal from Complex IV heme a all indicate a very reducing environment that is consistent with an active 

Complex I and a fully functioning respiratory chain that does not produce oxidative stress. 

 EPR is a unique tool in that it can interrogate the status of the mitochondrion at the time of freezing, in 

unprocessed viable biological samples. First, it is clear that in both liver and quadriceps muscle, EPR identified 

mitochondrial dysfunction in the DGUOK rat. Second, some mechanistic information on the DGUOK rat was 

obtained. In liver, the EPR results indicated that the reduced electron transfer chain activity of Complexes I is 

in part due to reduced expression but that the very low activity of Complex, III is not a consequence of reduced 

expression or Fe incorporation as FeS clusters. The retention of the Complex III Rieske 2Fe2S EPR signal in 

DGUOK liver indicates that Complex III is present at wild-type levels, incorporates the Rieske cluster, and 

electrons can progress through the respiratory chain at least as far as the Rieske cluster. The reason for 

Complex III inactivity remains unknown but appears to be downstream of the Rieske cluster. Oxidative stress 

may be important, and two independent markers for oxidative stress were identified, elevated aconitase 3Fe4S 

and Mn(II); two markers for liver damage were also identified, depressed catalase and elevated transferrin. In 

quadriceps muscle, EPR provides complementary information to the activity assays. The lack of Complex I 

activity and the EPR identification of oxidation of the three Complex II FeS clusters provides a rationale for the 

lack of any EPR markers for oxidative stress in muscle. A knowledge of whether oxidative stress is a 

consequence of mitochondrial disease, and in which tissues and why, is an important piece of information that 

may inform therapy choices.  

 

Conclusions. 
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The DGUOK rat capitulates major biochemical features observed in humans with DGUOK deficiency, 

specifically significantly reduced mtDNA content, reduced mitochondrial complex I, III and IV protein content 

and enzymatic activity in frozen liver.  EPR assessment of flash-frozen tissues has demonstrated dramatic 

differences in the mitochondrial electron transport chain status in situ compared with wild-type animals. The 

reproducibility and magnitude of these differences is encouraging given the relatively mild pathologic 

differences seen in the animals. It suggests that EPR may be able to reliably distinguish individuals with 

mitochondrial disease from distinct etiologies of muscle or liver disease in humans.   
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TISSUE 
Activity assayed 

1000 x Wild-type 

activity  citrate 
synthase activity 
 

1000 x DGUOK 

activity  citrate 
synthase activity 

Mann-Whitney 
U test p-value 

t-Test with 
transformed data 
p-value 

LIVER     

Complex I 230.08 ± 18.81 47.64 ± 9.53 0.008 0.002 

Complex II 991.9 ± 95.3  1291.6 ± 258.3 0.522 0.250 

Complex III 14.35 ± 0.80 1.02 ± 0.20 0.008 0.001 

Complex II - III 430.1 ± 32.6 129.3 ± 25.9 0.029 0.012 

Complex IV 137.54 ± 11.69 17.70 ± 3.54 0.014 0.002 

     
MUSCLE     

Complex I 108.1 ± 8.25 9.73 ± 4.25 0.008 0.015 

Complex II 278.1 ± 16.42 215.8 ± 18.41 0.522 0.093 

Complex III 3.43 ± 0.48 0.70 ± 0.18 0.036 0.025 

Complex II -III 263.7 ± 28.53 157.6 ± 15.36 1.00 0.070 

Complex IV 38.63 ± 5.60 53.93 ± 8.76 0.412 0.434 

 
Table 1. Results of electron transport chain assays of Complexes I - IV from muscle and liver from wild-type and 

DGUOK rats. 
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EPR Signal Liver 
W/T 

Liver 
DGUOK 
[ (%)]a 

Muscle 
W/T 

Muscle 
DGUOK 
[ (%)] 

Heartb 

CuA 47 ± 13 44 ± 15 
[NS]c 

9 ± 1 13 ± 1 
[+45] 

NDd 

Heme a 200 ± 50 100 ± 60 
[-50] 

ND ND 200 ± 30 

High-spin heme 116 ± 7 71 ± 9 
[-39] 

44 ± 1 31 ± 1 
[-30] 

183  3 

N1b + N2 26 ± 5 16 ± 5 
[-39] 

28.2 ± 0.2 7.4 ± 0.5 
[-74] 

111  1 

FeS N3 17 ± 8 8 ± 5 
[-53] 

16 ± 1 5.5 ± 0.7 
[-61] 

38  4 

FeS N4 41 ± 8 20 ± 6 
[-51] 

33 ± 1 14 ± 1 
[-59] 

108  4 

All Complex I FeS 84 ± 12 44 ± 9 
[-49] 

77 ± 1 26 ± 1 
[-66] 

257  6 

S3 + Acn 10.8 ± 1.6 15 ± 2 
[+37] 

1.3 ± 0.1 3.8 ± 0.1 

[+192] 
17  1 

FeS S1 27 ± 10 29 ± 13 
[NS] 

15 ± 1 8 ± 1 16 ± 5 

FeS S2 ND ND ND ND 60 ± 5 
S1 + S2 27 ± 10 29 ± 13 

[NS] 

15 ± 1 8 ± 1 
[-48] 

76 ± 7 

Rieske FeS 99 ± 11 98 ± 12 
[NS] 

37 ± 1 18 ± 1 
[-51] 

238 ± 5 

Mn(II) 295 ± 27 588 ± 32 
[+99] 

32 ± 3 20 ± 2 
[-35] 

ND 

 
Table 2. Fitting parameters for the EPR signals from spectra of liver and muscle tissue from wild-type and DGUOK rats. 

The absolute intensities of each species (or group of species) are shown for wild-type and DGUOK, along with the 

percentage differences between DGUOK and wild-type intensities in brackets. 

 

Footnotes. (a) Calculated as {[(DGUOK signal) - (wild-type signal)]  (wild-type signal)}  100. (b) Wild-type and 

DGUOK heart were indistinguishable. (c) Not significant. (d) None detected. 
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Figure 1. Absolute mtDNA content in DGUOK rats. The mtDNA copy numbers for eight week old M1 and M2 

DGUOK knockout rats compared with wild-type (SS) rats. The error bars indicate standard deviations for n = 6 (SS), n = 

4 (M1) and n = 3 (M2). 
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Figure 2: Skeletal muscle pathology in 11 month old WT and DGUOK rats.  Quadriceps muscles from DGUOK rats 

display little differences on H&E staining in comparison to WT littermates.  In contrast, staining for COX and SDH 

reveals numerous fibers in DGUOK rat muscle that are negative for both COX and SDH, whereas no such fibers were 

evident in WT rat muscle.  The bar at the bottom, right corresponds to 200 m. 
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Figure 32. Respiratory chain complex expression in DGUOK rat muscle. Western blots of mitochondrial electron 

transport chain complexes I-V and GAPDH from stripped membranes of quadriceps muscle from 11 month old wild-type 

and DGUOK rats are shown in the top panel. The results of quantitation of the respiratory chain complex bands are shown 

below, normalized for GAPDH expression. The error bars indicate standard deviations errors for n = 4.  
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 Figure 43. Electron transport chain functional assays of Complexes I - IV. The functional activities of 

Complexes I - IV from liver and quadriceps muscle of DGUOK rat are shown, normalized for mitochondrial content (as 

citrate synthase activity) and expressed as percentages of activities from wild-type. Detailed results are given in Table 1 

(or S1). 
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Figure 5. 12 K EPR spectra from wild-type and DGUOK rat tissue. The spectra are from samples of A, wild-type rat 

liver; B, DGUOK rat liver; C, wild-type rat quadriceps muscle; D, DGUOK rat quadriceps muscle; E, wild-type rat heart; 

and F, DGUOK rat heart. In each case, the sample completely filled the part of the EPR tube that occupied the active 

region of the resonator. A & B shown x 1, C & D are shown x 2, and E & F shown x 0.5. Spectra were recorded at 12 K, 

2.5 mW power. The lower-case labels identify specific signals in the spectra: (a) high-spin axial ferriheme g; (b) 

transferrin non-heme Fe(III); (c) the mI = 
5
/2 line at the low-field extremity of the six-line Mn(II) hyperfine pattern; (d) 

overlapping signals from aconitase and S3 [3Fe4S] clusters; (e) overlapping g2 resonances from Complex I [2Fe2S] and 

[4Fe4S] clusters; (f) resolved g3 resonances from N4 and N3 clusters; (g) high-spin catalase gx and gy lines; (h) low-spin 

catalase resonances; (i) heme a g1; and (k) Rieske [2Fe2S] cluster g1 and g3 resonances. 

  

Formatted: Line spacing:  single



Mitochondrial dysfunction and EPR abnormalities in DGUOK deficient rats  Bennett et al 

 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 40 K EPR spectra from wild-type and DGUOK rat tissue. The spectra are from samples of A, wild-type rat 

liver (solid line) and DGUOK rat liver (dashed line); and B, wild-type rat quadriceps muscle (solid line) and DGUOK rat 

muscle (dashed line). Spectra were recorded at 40 K, 2.5 mW power.  
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Figure 7. Quantitative analysis of the 12 K EPR signals from wild-type and DGUOK rat tissues. Traces A, B, E, F, I 

and J show the g' ~ 2 region of the EPR spectra of A, wild-type rat liver; B, DGUOK rat liver; E, wild-type rat 

quadricepquadriceps muscle; F, DGUOK rat quadricepquadriceps muscle; I, wild-type rat heart; and J, DGUOK rat heart. 

Trace C is the difference spectrum obtained by subtraction of A from B, and is shown multiplied by a factor of two; 

likewise, G = 2(F - E) and K = 2(J - I). Trace D is a theoretical simulation of C generated by the subtraction of fits of A 

and B to model spectra of the paramagnetic species likely to be observed in the mitochondrion. Fitting parameters are 

presented in Table 2 (or S2). Similarly, trace H is a simulation of J from fits to E and F. No attempt was made to simulate 

K, as no significant differences were observed between fits to I and J. 
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Figure 8. Summary of EPR of DGUOK rat liver and muscle. A comparison of signal intensities is shown for some of 

the respiratory complex redox centers in liver and muscle from the DGUOK and wild-type rat. The standard errors were 

calculated from those of the fit parameters, presented in Table 2 (or S2). 
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Table S1 
In contrast to liver (n=5), mtDNA content in muscle tissue from 4 Wild Type (Dahl/SS) rats compared with 4 
DGUOK M2 rats demonstrates no significant difference. 
  

 WILD TYPE RAT DGUOK M2 RAT TTEST 

SOLEUS MUSCLE 1036 710 0.72 

GASTROCNEMIUS MUSCLE 910 571 0.31 

TRICEP MUSCLE 1270 418 0.25 

DELTOID MUSCLE 1043 1043 0.81 

LIVER 1981 187 0.0002 
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