267 research outputs found

    Exponential Decay of Correlations in a Model for Strongly Disordered 2D Nematic Elastomers

    Full text link
    Lattice Monte-Carlo simulations were performed to study the equilibrium ordering in a two-dimensional nematic system with quenched random disorder. When the disordering field, which competes against the aligning effect of the Frank elasticity, is sufficiently strong, the long-range correlation of the director orientation is found to decay as a simple exponential, Exp[-r/x]. The correlation length {x} itself also decays exponentially with increasing strength of the disordering field. This result represents a new type of behavior, distinct from the Gaussian and power-law decays predicted by some theories.Comment: Latex file (4 pages) + 2 EPS figure

    Glycidyl-methacrylate-based electrospun mats and catalytic silver nanoparticles

    Get PDF
    P(AN-GMA) and PGMA fibers coated with monodisperse silver nanoparticles have been prepared by a combination of electrospinning and electroless plating. The morphology of the electrospun fibers remains unchanged after surface hydrazination. Oxidation of hydrazine in an ammoniacal solution of AgNO3 reduces and deposits silver atoms along the fiber surface, which then coalesce to Ag particles. The size of the silver nanoparticles is varied between 20-60 nm. Since the density of the active sites for silver reduction is lower in P(AN-GAAA), a smaller particle size could be obtained. The catalytic activity of the silver nanoparticles has been confirmed

    Quasi-long range order in the random anisotropy Heisenberg model

    Full text link
    The large distance behaviors of the random field and random anisotropy Heisenberg models are studied with the functional renormalization group in 4ϵ4-\epsilon dimensions. The random anisotropy model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law <m(r1)m(r2)>r1r20.62ϵ<{\bf m}({\bf r}_1) {\bf m}({\bf r}_2)>\sim| {\bf r}_1-{\bf r}_2|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as χH1+0.15ϵ\chi\sim H^{-1+0.15\epsilon}. In the random field model the correlation radius is found to be finite at the arbitrarily weak disorder.Comment: 4 pages, REVTe

    Nonlinear Elasticity, Fluctuations and Heterogeneity of Nematic Elastomers

    Full text link
    Liquid crystal elastomers realize a fascinating new form of soft matter that is a composite of a conventional crosslinked polymer gel (rubber) and a liquid crystal. These {\em solid} liquid crystal amalgams, quite similarly to their (conventional, fluid) liquid crystal counterparts, can spontaneously partially break translational and/or orientational symmetries, accompanied by novel soft Goldstone modes. As a consequence, these materials can exhibit unconventional elasticity characterized by symmetry-enforced vanishing of some elastic moduli. Thus, a proper description of such solids requires an essential modification of the classical elasticity theory. In this work, we develop a {\em rotationally invariant}, {\em nonlinear} theory of elasticity for the nematic phase of ideal liquid crystal elastomers. We show that it is characterized by soft modes, corresponding to a combination of long wavelength shear deformations of the solid network and rotations of the nematic director field. We study thermal fluctuations of these soft modes in the presence of network heterogeneities and show that they lead to a large variety of anomalous elastic properties, such as singular length-scale dependent shear elastic moduli, a divergent elastic constant for splay distortion of the nematic director, long-scale incompressibility, universal Poisson ratios and a nonlinear stress-strain relation fo arbitrary small strains. These long-scale elastic properties are {\em universal}, controlled by a nontrivial zero-temperature fixed point and constitute a qualitative breakdown of the classical elasticity theory in nematic elastomers. Thus, nematic elastomers realize a stable ``critical phase'', characterized by universal power-law correlations, akin to a critical point of a continuous phase transition, but extending over an entire phase.Comment: 61 pages, 24 eps pages, submitted to Annals of Physic

    Slow stress relaxation in randomly disordered nematic elastomers and gels

    Full text link
    Randomly disordered (polydomain) liquid crystalline elastomers align under stress. We study the dynamics of stress relaxation before, during and after the Polydomain-Monodomain transition. The results for different materials show the universal ultra-slow logarithmic behaviour, especially pronounced in the region of the transition. The data is approximated very well by an equation Sigma(t) ~ Sigma_{eq} + A/(1+ Alpha Log[t]). We propose a theoretical model based on the concept of cooperative mechanical resistance for the re-orientation of each domain, attempting to follow the soft-deformation pathway. The exact model solution can be approximated by compact analytical expressions valid at short and at long times of relaxation, with two model parameters determined from the data.Comment: 4 pages (two-column), 5 EPS figures (included via epsfig

    Electro-Mechanical Fredericks Effects in Nematic Gels

    Full text link
    The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a competition between quartic (soft) and conventional harmonic elasticity which dictates the director response. By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy agrees well with the conoscopy measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to discussion of fig.3, cosmetic change

    Soft and non-soft structural transitions in disordered nematic networks

    Get PDF
    Properties of disordered nematic elastomers and gels are theoretically investigated with emphasis on the roles of non-local elastic interactions and crosslinking conditions. Networks originally crosslinked in the isotropic phase lose their long-range orientational order by the action of quenched random stresses, which we incorporate into the affine-deformation model of nematic rubber elasticity. We present a detailed picture of mechanical quasi-Goldstone modes, which accounts for an almost completely soft polydomain-monodomain (P-M) transition under strain as well as a ``four-leaf clover'' pattern in depolarized light scattering intensity. Dynamical relaxation of the domain structure is studied using a simple model. The peak wavenumber of the structure factor obeys a power-law-type slow kinetics and goes to zero in true mechanical equilibrium. The effect of quenched disorder on director fluctuation in the monodomain state is analyzed. The random frozen contribution to the fluctuation amplitude dominates the thermal one, at long wavelengths and near the P-M transition threshold. We also study networks obtained by crosslinking polydomain nematic polymer melts. The memory of initial director configuration acts as correlated and strong quenched disorder, which renders the P-M transition non-soft. The spatial distribution of the elastic free energy is strongly dehomogenized by external strain, in contrast to the case of isotropically crosslinked networks.Comment: 19 pages, 15 EPS figure

    Quasi-long-range order in nematics confined in random porous media

    Full text link
    We study the effect of random porous matrices on the ordering in nematic liquid crystals. The randomness destroys orientational lang-range order and drives the liquid crystal into a glass state. We predict two glass phases one of which possesses quasi-long-range order. In this state the correlation length is infinite and the correlation function of the order parameter obeys a power dependence on the distance. The small-angle light-scattering amplitude diverges but slower than in the bulk nematic. In the uniaxially strained porous matrices two new phases emerge. One type of strain induces an anisotropic quasi-long-range-ordered state while the other stabilizes nematic long-range order.Comment: 4 pages, Revte

    Symmetries and Elasticity of Nematic Gels

    Full text link
    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these novel materials.Comment: 21 pages, 4 eps figure
    corecore