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Introduction

Significant aggregation takes place when nanoparticles are

blended into a random amorphous polymeric medium, cont-

rary to in situ generation which results in uniform size distri-

butions.[1] In the present paper, we propose a theoretical

model to study the size and distribution of aggregates that

take place when the particles are blended into a random

amorphous mobile elastomeric medium. We test the predic-

tions of the model with experimental results on silica-filled

end-linked poly(dimethylsiloxane) (PDMS) networks and

explain the increase in the degree of aggregation with

increase in filler content.

Organic/inorganic nanocomposites with different levels

of combinations have important applications in optics,[2]

electronics,[3] and rubber elasticity.[4] The efficiency of the

nanocomposites depends on dispersion, size distribution of

the guest inorganic particles in host organic matrix, and

their specific interactions with polymer chains. The homo-

genous dispersion of uniform-sized nanoparticles is the

most desired characteristic of these materials. However,

clustering or aggregation of inorganic nanoparticles is often

a problem, especially when the particles are incorporated

into a matrix by blending rather than in situ generation

(throughout the paper we use the terms cluster and aggre-

gate interchangeably). The smaller (non-aggregated) par-

ticles provide larger contact area between the organic and

inorganic components due to large surface-to-volume ratio
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and are desirable for many applications. Despite the impor-

tance of the problem of aggregation of particles in com-

posites, a detailed model explaining the role of different

factors in such systems does not yet exist.

PDMS/silica is one of the most popular pairs of these

nanocomposite materials. Silica is a strong and efficient

reinforcing agent of PDMS[5] and perfect filler due to the

ease of surface modification.[6] Strong polymer-filler inter-

actions are responsible for the improvement of mechanical

properties of silicone rubber. These interactions lead to the

adsorption of polymer molecules on the filler’s surface and

to the formation of a thin layer of ‘‘bound rubber’’ whose

physical and chemical properties are different from bulk

rubber.[7,8] Themolecular structure of the bound rubber and

its effect on the network properties has been investigated

experimentally by means of DSC[7] and 1H NMR spectro-

scopy.[7,9–11] High resolution NMR spectroscopy shows

that physically adsorbed PDMS chains are immobilized

at the silica surface with a small fraction of monomer –

Si(CH3)2O– units. The remaining portions of the chains

situated outside the interface are mobile. The immobilized

chains cause a substantial decrease in the heat capacity at

the glass transition temperature.[7] Gussoni et al.[11] also

used NMR spectroscopy to investigate silica-filled PDMS

rubbers, and observed decrease in segmentalmobility of the

PDMS chains in the vicinity of the filler surface. Berriot

et al.[9] employed 1H NMR experiments on filled rubbers

and observed a layer of immobilized segments at the parti-

cle surface. In the case of chains chemically grafted to the

silica surface, they observed immobile layers which they

described as a glassy shell around the filler surface. Cos-

grove et al.[12] used DSC and NMR measurements, and

showed that the reduction in the mobility of the PDMS

chains corresponded to a shift in the glass transition

to higher temperatures. These shifts are relatively small;

nevertheless, they indicate the presence of a gradient of

segmental mobility in going from the rubber towards the

silica surface. Although the reinforcement mechanism of

PDMS is not completely understood yet, it is well-known

that the polymer-filler interactions control the macroscopic

mechanical behavior of nanocomposite materials. The ex-

tent of reinforcement, i.e., the extent of adsorption, is a

function of adhesion forces between polymer and filler, the

surface area of the filler, molecular weight of the polymer,

and concentration of the filler.[5,8] The quantity of polymer

adsorbed per unit weight of silica is found to be independent

of the filler concentration, assuming perfect wetting of the

silica surface. However, it is proportional to the number of

silanol groups at the silica surface. The thickness of the

polymer layer around the silica particles, known as bound

rubber, is in the order of the size of a polymermolecule, i.e.,

1–2 nm.[7] Bound rubber cannot be extracted from uncured

silicone rubber completely. According to results of Arang-

uren, the percentage of the chains situated at the interface

are 5.3 and 11.8 when the silica fractions are 8 and 15 vol.-

%, respectively. (The surface area of filler they used was

108 m2 � g�1.)[8] The kinetics of adsorption was studied by

Levresse et al.[13] Rate constant of adsorption was found to

depend on the strength of the interaction between the chain

ends, the silanol groups on the particles, and the molecular

weight of the chains.[14–16] However, the rate was in-

dependent of the silica content.[8] Dynamical rheological

properties of uncured dispersion of silica in liquid poly-

isoprene (PI) and PDMS-PI block copolymer were inves-

tigated by Gurovich et al.[17,18] They observed an increase

in dynamic storage modulus (G0) with decreasing PI mole-

cular weight and with increasing silica content. They also

claimed that the amount of bound rubber as well as the

fraction of PDMS segments on the block copolymer play an

important role on the mechanical properties of the silica/

PDMS-PI solution.

Silica powder consists of aggregates of individual

spherical particles, which are fused together, where each

particle is 10–20 nm in diameter. Agglomerates are clusters

of aggregates, which are assumed to be the primary struc-

tures in nanocomposite systems, connected by secondary

forces such as hydrogen bonding and van der Waals inter-

actions.[8] Scattering techniques have been used in the

characterization of colloidal particles.[19] The size of the

colloids in suspension has been controlled either by adding

salt or adjusting the pH of the solution.[20] Simovic and

Prestidge[21] investigated the adsorption and subsequent

aggregation of silica particles on the PDMS droplet-water

interface. The packing behavior of primary particles in

small clusters, which are attached to the droplet surface, is

discussed in detail by Manoharan et al.[22] Size control is

governed by particle-droplet and particle-particle interac-

tions through colloidal forces. As can be seen from these

examples, all of the work in this field focused on the

agglomeration phenomenon of silica in colloidal solutions,

and only a small amount of information is present on

agglomeration in the bulk. In contrast to silica, a detailed

studywas performed on fractal structures of carbon black in

rubbers by Klüppel et al.[23] The mechanisms of cluster

growth at carbon black concentrations below and above gel

point were clarified. They further investigated the effect of

filler networking on mechanical and electrical properties of

elastomers on the basis of percolation theory and kinetic

cluster-cluster aggregation model, respectively.[24]

The size of silica filler in an organic matrix depends on

the methods by which the particles are produced. Silica

can be introduced into the matrix by either blending with

polymer solution (melt) prior to crosslinking or by addi-

ng additional tetraethoxysilane (TEOS) for in situ silica

precipitation through the sol-gel reaction. In situ precip-

itation is an efficient technique for producing almost

monodisperse particles with no or negligible agglomer-

ation.[1,25] Agglomeration problem is important in blend-

ing, however. Aranguren et al.[8] studied the agglomeration

inmechanicallymixed suspensions of silica in PDMS.Yuan
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and Mark[5] compared the results of the two different

techniques.

Despite a large body of work in this field, as reviewed in

the preceding paragraphs, a theoretical model that system-

atically explains the dependence of the extent of aggre-

gation on filler content in blended systems is still lacking.

In the present study, we propose a statistical model that

establishes a quantitative relationship among filler content,

the strength of the surface forces, and the resulting distri-

bution of aggregate sizes.We compare the predictions of the

model with experimental data obtained from end-linked

PDMSnetworks intowhich silica particles are blended. The

experimental work and the proposedmodel are presented in

the following two sections, respectively. In the section

Comparison with Experimental Results, predictions of the

model are compared with results of atomic force micro-

scope (AFM) measurements on the silica particles. In

section 5, we discuss the merits and the limitations of the

model. Themathematical details of themodel are presented

in the Appendix.

Experimental Part

The fumed silica (CAB-O-SIL-S5505), which has 225 m2 � g�1

surface area and 14 nm of non-aggregated single particle
diameter, was used without any surface treatment. Hydroxyl
groups cover 40%of the silica surface. Suspensions of untreated
fumed silica in PDMS/toluene solution (10 g � (20 g)�1) were
prepared at room temperature and mixed with a stirrer for 2 h
followed by sonicating for 2 min to destroy agglomeration. The
effect of stirring time was checked by preparing samples by
stirring for 24 h. The results did not show significant differences
compared those obtained by stirring for 2 h. The hydroxyl
terminated PDMS (Baysilone oil T 50-GE Bayer Silicone) was
end-linked into a network by reacting with an excess amount of
the crosslinking agent, TEOS. The filler content varied in the
range of 0–2.45 vol.-%. TEOS (600 ml Sigma) and the catalyst,
tin(II) 2-ethylhexanoate (Aldrich), were added to the dispersion
while stirring. The end-linking reactions were carried out in a
Teflonmold at room temperature for 24h and at 80 8Covernight.
The thickness of the resulting filmwas in the order of 2mm. The
molecular weight of PDMS is 53 kDa (nw¼ 675), where nw is
the weight-average degree of polymerization. The polydisper-
sity index was close to 1.62.

Although the level of aggregation in the network is in-
dependent of stirring time, the nanoparticles come already
aggregated before introducing into the polymer solution, and
hence the stated diameter of 14 nm is that of a non-aggregated
single particle. Elimination of the aggregates and the sepa-
ration into individual particles cannot be achieved unless the
particles have an efficient surface modification. Ultrasonica-
tion is applied prior to end-linking tominimize the aggregation
of the silica particles. It has to be noted that ultrasonication,
which employs a sound wave, is efficient when the size of the
aggregate is comparable with that of the wavelength. The
aggregates smaller than the wavelength are not separated
as efficient as the particles having comparable size with the

wavelength. Thus, aggregation isminimized but not eliminated
completely at the beginning of the composite synthesis. In the
present study, the ‘‘individual filler particle size’’ is defined as
the average size of the aggregate obtained after sonication.

The surface of PDMS/silica films was imaged by tapping-
modeAFM (Nanoscope IIIa, Digital Instruments) using oxide-
sharpened Si tips, and silica particles were detected on the
phase images by comparing them with the heighted ones. The
dimensions and size distributions of silica clusters were deter-
mined by particle analysis option of the AFM Nanoscope
software. A source of uncertainty might be expected in
two-dimensional AFM imaging. Particles overlapping in one
dimension may appear as one cluster even though they are not
parts of the same aggregate. In fact, this argument is ruled out if
the thin depth of field and the high resolution of AFM are
considered. In tapping mode of AFM imaging, the depth of
field, i.e., the information one can get, is limited with the
outermost layer or the layer below the surface of the specimen.
In otherwords,AFM is not able to give information deeper than
its depth of field and, therefore overlapping taking place out of
the surface layer (in the bulk) cannot be seen. The occurrence
of this overlapping in the interaction volume between the AFM
tip and the surface of specimen at low particle concentrations
(volume fractions are lower than 0.025) is unlikely. Even if the
overlapping occurs in the surface layer, the resolution of the
AFM is powerful enough to figure out the real aggregate struc-
ture (lateral: �1 nm and vertical: �0.1 nm).

Theory and the Model

In this section and in the Appendix, we present a theoretical

model that leads to the determination of the distribution of

aggregate size, and therefore to themean aggregate size and

their dependence on filler content. As stated in the Intro-

duction, we use the terms cluster and aggregate inter-

changeably. Themodel is based on the following three basic

assumptions:

(1) The individual particles are spherical and of uniform

size with diameter D.

(2) The individual particles are assumed to be randomly

placed within the volume of the material. The aggre-

gation of the randomly deposited particles results from

fluctuations in the density of particles in the system as a

result of which several particles may touch each other

and form clusters as the amount of particles increases.

The formation of a cluster is defined here as ‘‘random

aggregation’’. The randomness assumption implicitly

states that there are no attractive forces between the

individual particles, and the only interaction is that of

excluded volume, where two particles cannot penetrate

each other.

(3) The matrix surrounding a given particle forms a suffi-

ciently mobile environment. This assumption is made

to ensure that if two or more particles are to meet

randomly while mixing the filler and the matrix,

they should not be hindered from doing so due to the
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presence of the matrix. The main consequence of this

assumption is that the polymer does not significantly

change the particle size distribution of the filler. In the

experiments, the choice of a PDMS matrix in the

presence of a diluent provides the mobile environment

stated in this assumption. A thermoplastic matrix, for

example, would be too rigid and fails to provide a

sufficiently mobile environment. This assumption is

supported by the experimental work of Aranguren

et al.[8] where the size distribution of silica particles

were determined before and after mixing with different

molecular weights of PDMS chains. Two effects of

mixing with PDMS were observed. First, there was a

significant decrease in the aggregate size, which was

attributed to the breakup of particles due to mixing.

Second, there was a small narrowing of the distribution

of particle sizes. In other words, no significant distor-

tion of the particle size distributionwas observedwhich

is in support of our assumption that the presence of the

polymer does not change the distribution significantly.

For low degrees of filler content, assumption 2 leads to

insignificant degrees of aggregation, contrary to experi-

mental data. For this reason we modify assumption 2 and

consider the following case:

(20) The particles interact favorably with each other, and
therefore form clusters which are larger than those obtained

in the random case.

The model is based on counting the number of particles

and clusters in a cylindrical volume. In Figure 1, a small

cylindrical volume is depicted in which there are eight

individual particles each of diameter D that form three

clusters with one, three, and four particles. We do not ela-

borate on the specific dimensions of the cylinder, except

that (i) its length, L, should be sufficiently large so that the

number of individual particles in the cylinder is large and

(ii) its diameter, h, should be in the order of average cluster

size so that a given cross-section contains a single cluster,

on the average. In the calculations that are presented in full

detail in the Appendix, we take the diameter of the cylinder

to be equal to the average cluster size, Dc. Also shown in

Figure 1 are the projections of the diameters of the particles

on an axis parallel to the axis of the cylinder. Each pro-

jection is a line segment of length D. If two particles are in

contact, their projections on the axis overlap, as can be

observed from Figure 1. Thus, a cluster of particles is

represented by a group of overlapping projection lines. The

projections defined in this manner allow for a counting

scheme that allows us to determine the cluster formation

probabilities and cluster sizes of the filler particles, and

finally to the distribution of cluster sizes.

Mapping the three-dimensional clusters into their one-

dimensional projections as described above is an approxi-

mation that simplifies the problem significantly. The

statistical analysis of overlapping objects in one dimension

has previously been used in great detail in the area of

genome analysis.[26] There, segments of fixed length are

projected randomly on the long genome and the sizes of

contiguous clusters of segments are calculated. In the

present paper, as described in detail in theAppendix, we use

the same mathematical model for the case of random filler

aggregation. The details of statistical formulation of one-

dimensional cluster sizes and details of calculations are

given in ref.[26] and will not be repeated here for the interest

of brevity. However, in order to reduce cross-referencing,

the computational details are presented in the Appendix.

The theoretical model whose basic features are described

above leads to the distribution of aggregate sizes as

PðnÞ ¼ e�a0e
affiffiffiffiffiffi

2p
p eðaþ1Þn a0

n

� �nffiffiffi
n

p
" #

ð1Þ

This expression is derived in theAppendix and is given as

Equation (A15). Here, n is the number of individual silica

particles in a cluster. The term ‘‘cluster size’’ is used

synonymouslywith the number of individual silica particles

in the cluster. a0 is a parameter of the model [see Equation

(A3) for its definition in terms of average cluster size],Dc,

diameter of the individual filler particle, and the volume

fraction, n, of fillers). The variable a is the coefficient that

expresses the strength of the interfacial energy per unit area,

g, for a filler particle, and is defined as

a ¼ 4pr2g
kT

ð2Þ

where, r is the effective radius of a filler particle, k the

Boltzmann constant and T the absolute temperature.

The average diameter,Dc, of a cluster is given according

to the model as

Dc

D
¼ 1þ 3

4
eav ð3Þ

where,D is the diameter of the individual particle, and a and
n are as defined above.

Equation (1) and (3) are the main predictions of the

model which will be compared with results of experiments

in the following section.Figure 1. Clusters of individual particles in a small cylinder.
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Comparison with Experimental Results

In this section,we compare the predictions of the theoretical

model with results of experiments on silica-filled PDMS

networks. A total of six samples with silica volume percent

of 0.24, 0.48, 0.96, 1.45, 1.95, and 2.45 were prepared and

tested. In Figure 2, sections for 0.48, 1.45, and 2.45 vol.-%

are presented. The cluster sizes show different degrees

of distribution for different filler contents. In Figure 3,

the distributions of cluster diameters are shown. Several

interesting features are observed: increasing the filler

content results in (i) larger average cluster diameters,

(ii) decrease in the maxima of the distributions and increase

in dispersion, and (iii) skewed distribution curves, showing

a long tail extending to large cluster sizes. Mean cluster

diameters are plotted as a function of filler content (not

shown).A linear relationship is observed,where the straight

line is the best fitting line with equationDc ¼Dþmv, with

D¼ 36.7 nm and m¼ 9 228. Substituting these values into

Equation (3) leads to a value of a¼ 5.8.

In Figure 4, results of Equation (1) are presented for P(n)

as a function of n. The five curves correspond to the five

different filler contents used in our experiments, v¼ 0.0024,

0.0048, 0.0096, 0.0145, and 0.0195. The filler content

dependence enters Equation (1) through the parameter a0.

The fifth filler content used in the experiments, v¼ 0.0245,

was too high to allow accurate computation of the distri-

butionP(n) using Equation (1) and hence does not appear in

Figure 4. The magnitudes of the maxima of the curves

decreasewith increasing filler content. Also, the dispersion,

i.e., the spreading out of the curves, increases with

increasing filler content. Both of these observations are in

qualitative agreement with experimental data presented in

Figure 2 and serve as the most significant test of the theory.

Average values n of n corresponding to each curve in

Figure 4 are obtained using the expression n ¼
Ð1
1

nPðnÞdn,
where P(n) is given by Equation (1). The correspondingDc

values, obtained from n using the expression Dc ¼ D�1=3
n

for compact arrangement of particles, are plotted as a

function of v in Figure 5. The filled points are obtained from

Figure 2. Tapping mode AFM micrographs of silica particles in PDMS matrix. The silica contents
are for (a) 0.48, (b) 1.45, and (c) 2.45 vol.-%. The scale bars shown in the images are 1 mm.

Figure 3. The distributions of the particle diameters prepared
from different volume fractions of silica.

Figure 4. The distributions of particle diameters based on the
results of the proposed model.
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these calculations, and the line is the best fitting line. The

open circles are experimental points, and fall close to the

predicted values. This agreement may be accepted as a self-

consistency check of the formulation, and indicates that the

distributions derived from the proposed model are accurate

representations of filler aggregation.

Concluding Remarks and Discussion

The statistical model presented in this paper is based on the

counting technique employed in contig size analysis in

DNA technology. As discussed in presenting Figure 1

above, the three-dimensional particles are projected into

one dimension for counting the state of overlap. We

succeeded in formulating the aggregation problem only

after adopting this simplifying assumption. One source of

error in reducing the problem to a one-dimensional problem

may be miscounting, where two aggregates may be neigh-

boring but independent in the imaginary cylinder, and upon

projection into one dimension they may be counted as a

single cluster. An exact three-dimensional analysis that

would remove these shortcomings would be prohibitively

complex at this time. Assuming that aggregate size distri-

butions are independent along three coordinate directions,

one can approximate the three-dimensional distribution,

P(n), asP(n)¼Px(n)Py(n)Pz(n), wherePx (orPy orPz) is the

distribution along one dimension given by Equation (1).

Then, the general shape of the three-dimensional distri-

bution or the two-dimensional distribution that is observed

in the actual AFM measurements will be similar to that

given by Equation (1). The results based on this projection

technique lead to results that were self-consistent, and also

in agreement with the results of AFM measurements on

silica-filled PDMS networks. However, the discussion pre-

sented in this paragraph pertains to the similarities of the

shapes of the distributions in one, two, or three dimensions.

It should be noted that the problem itself is an aggregation

problem in three dimensions and a one-dimensional count-

ing technique is employed for its approximate analysis.

A second important approximation is the linearization of

the equations describing average particle size. Although

higher order approximations are possiblewithin the general

formulation presented here, we adopted the linearization

approximation for the sake of clarity. It should however

be noted that the magnitude of the parameter a depends

strongly on the linearization, and is significantly over-

estimated. This follows from the fact that a is obtained here
by fitting a straight line to the data points.

The present model is strictly valid for low degrees of filler

content where different aggregates do not percolate through

the system. Inpolymer theory, the physical picture resembles

the problem of chain branching without gelation.[27,28]

However, results of the present analysis depart significantly

from that of the hyperbranched polymer growth theory in the

absence of excluded volume. According to this model, the

distributionW(n) of cluster size n is given by the expression

WðnÞ ¼ ½ðf � 1Þn�!
n!½ðf � 2Þnþ 1�! p

n�1ð1� pÞðf�2Þnþ1 ð4Þ

where, p and f are the parameters of the theory.[27,28] The

maximum of Equation (4) is always at n¼ 0, in disagree-

ment with Equation (A15) and experimental observation.

The present model is based on several assumptions that

do not hold strictly for the hydrophilic silica and PDMS

used as the experimental system to check the model. For

example, the individual particles are not spherical and of

uniform size. However, the AFM images, such as the ones

shown in Figure 2, and the aggregate size distributions

obtained from them as shown in Figure 3 indicate that in the

lowest filler content the dispersion in aggregate size is

significantly lower and their sizes are approximately spheri-

cal. The ‘‘individual particle size’’ of the model corre-

sponds to the size of an equivalent sphere obtained at

infinite dilution. According to the model, this diameter is

about 40 nm, as seen from the y-intercept of Figure 5. This

diameter may contain several individual silica particles and

the immobilized layer of PDMS chains around them. The

deviations of real systems from the assumptions of the

model becomemore significant at high filler content. In this

respect, the present theory is strictly applicable for low

silica content.

Despite theweaknesses and approximations described in

the preceding paragraphs, the proposed model (i) predicts

the increase in cluster size with increasing amount of filler,

(ii) explains the increase in the dispersion of aggregate sizes

with increasing amount offiller, and (iii) the skewness of the

distribution functions that is observed in experimental

results.

Figure 5. Comparison for measured and predicted cluster
diameters at different filler contents in PDMS matrix, 0.24, 0.48,
0.96, 1.45, and 1.95 vol.-%. Open circles and filled points refer to
experimental and predicted values, respectively. The straight line
is the best fit to the predicted points.
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Appendix

In this section, we give the detailed derivation of Equation

(1) and (3) of the text, which express the cluster size distri-

bution and the mean cluster size of filler particles, res-

pectively.

We use Figure 1 as a reference. The axis on which pro-

jections are made is the interval (0, L). The projection of

each individual particle on this axis forms a sub-interval (0,

D) of length D. Let us choose two such projections for

which the left-hand end (LHE) of the secondprojection falls

on the interval (0, D) of the first projection. This is equi-

valent to the condition that the corresponding two filler

particles are either in contact or belong to the same cluster.

As a result of the random placement assumption, the

distribution of the LHE points of the projections is uniform

in the interval (0,L). Therefore, the probability of anLHEof

a projection to be in a given interval (0, D) is D/L. Since

particles belong to the same cluster when their projections

overlap, the number of overlapping projections is equal to

the number of particles in a cluster. Again, as the result of

randomness assumption, the distribution of the number of

LHEs of projections in a given interval (0,D) is binomial. If

there are N individual particles within the volume of the

cylinder, then the average number a0 of LHEs falling on the

given interval (0, D) is

a0 � ND=L ðA1Þ

Here, the subscript zero indicates that there are no inter-

actions between the particles, and the random conditions

hold. Interparticle interactions are defined here as either

favorable where the interaction energy between the parti-

cles is negative, and the particles tend to form larger

clusters, or unfavorable, where the interaction energy is

positive and the particles tend to remain as far apart as

possible. The volume fraction v of fillers may be approxi-

mated by the ratio of the filler particles in the cylinder to the

volume of the cylinder. Thus

v ¼
N
p
6
D3

p
4
D

2

cL
ðA2Þ

Solving this expression for ND/L and substituting in

Equation (A1), the variable a0 may be expressed in terms

of the volume fraction of particles v, and the particle and

cylinder diameters as

a0 ¼
3

2

Dc

D

� �2

0

v ðA3Þ

The subscript zero in Equation (A3) indicates the absence

of interparticle interactions. Since N is large, D/L is small,

and a0 is finite, the probability P0(n) of the number n of

overlaps on a given interval (0, D) in the absence of

interparticle interactions is represented by the binomial

distribution. The lattermay be approximated by the Poisson

distribution with mean a0

P0ðnÞ ¼
e�a0an0
n!

; n ¼ 0; 1; 2; . . . ðA4Þ

The probability P0(0) that no overlap occurs in (0, D) is

Pð0Þ ¼ e�a0 . The probability that at least one overlap

occurs is 1�P(0) and from Equation (A4) it is obtained as

1� e�a0 .

For the case of interactions between particles, the distri-

bution P0(n) has to be modified, and the new distribution

P(n) must have a term reflecting the degree of interparticle

interaction.

There are several possible ways of introducing the

modifications in the probability function P0(n) due to

interparticle interactions. In the presence of assumption 3

stated above, an efficient route which leads to a simple

solution is to use the grand canonical ensemble representa-

tion. Thus, P(n) may be expressed in the form

PðnÞ ¼ QðnÞenm=kT
X

; n ¼ 0; 1; 2; . . . ðA5Þ

where Q(n) and X are analogous to the canonical partition

function for a system containing n particles, and the grand

canonical partition function, respectively. In the absence of

interactions, P(n) reduces to P0(n) and
QðnÞ
X / e�a0an

0

n! .

Substituting this expression in Equation (A5), we obtain

PðnÞ / e�a0an0e
nm
kT

n!
ðA6Þ

For particles in equilibrium where assumption 3 stated in

the Theory and theModel, is valid, the chemical potential m
is the same for clusters of all sizes.[29] This conditionmay be

expressed as

m ¼ mn ¼ m0n þ
kT

n
ln

Xn

n

� �
¼ constant; n ¼ 1; 2; . . .

ðA7Þ

where, mn is the chemical potential of a cluster of size n, Xn

is its mole fraction and m0n is the standard part of the

chemical potential expressed as the mean interaction free

energy per molecule in a cluster of size n. Themole fraction

Xn is related to the probability P(n) by the expression

PðnÞ ¼ Xn=
P

Xn. Equation (A7) may be written as[25]

Xn / nfX1e
ðm0

1
�m0nÞ=kTgn ðA8Þ

For spherical particles

m0n ¼ m01 þ akT
n1=3

ðA9Þ

where m01 is the bulk energy per molecule and

a ¼ 4pr2g
kT

ðA10Þ
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where g is the interfacial energy per unit area and r is the

effective radius of a particle. Substituting Equation (A9)

and (A10) into Equation (A8) and rearranging leads to

Xn ¼ CnfX1e
agn ðA11Þ

where the approximation ea½1�ð1=3Þ� � ea has been

adopted.

In terms of probabilities, Equation (A11) may be written

as

PðnÞ ¼ CnfPð1Þeagn ðA12Þ

where Cn is to be chosen such that
P1

n¼0 PðnÞ ¼ 1. Using

Equation (A4) for P(1) in Equation (A12),Cn is obtained as

Cn ¼
1

n!ea0ea
ðA13Þ

The probability function given by Equation (A4) in the

absence of interactions is now obtained, in the presence of

interactions, as

PðnÞ ¼ e�a0e
aþa nan0
n!

ðA14Þ

Employing Stirling’s approximation for the factorial in the

denominator, Equation (A14) may be written in computa-

tionally more suitable form as

PðnÞ ¼ e�a0e
affiffiffiffiffiffi

2p
p eðaþ1Þn a0

n

� �nffiffiffi
n

p
" #

ðA15Þ

Equation (A15) defines the distribution of cluster sizes in

the filled elastomer, and is given in the text as Equation (1).

Since each cluster of segments in (0, L) has a unique right-

most member (see Figure 1), the number of clusters along

the axis is equal to the number of their rightmost members.

The condition that a projection is the rightmost member of a

cluster is equivalent to the condition that no other projection

has its LHE on it. The probability of this condition from

Equation (A14) is Pð0Þ ¼ e�a0e
a
. From this probability

relationship, we see that the parameter a that is obtained in

the presence of interparticle interactions is related to a0 as

a¼ a0e
a. The mean number of clusters Nc � NPð0Þ may

now be written as

Nc ¼ NPð0Þ ¼ Ne�a0e
a ðA16Þ

In the presence of favorable interactions between particles,

Equation (A16) shows a significant decrease in the number

of clusters.

For compact arrangement of the particles in the clusters,

one obtains the average cluster diameterDcas

Dc

D
¼ e

1
3
a0e

a ðA17Þ

Substituting for a0 on the right-hand side of Equation (A17)

from Equation (A3) leads to

Dc

D
¼ e

1
2

�Dc
Dð Þ2

0
eav ðA18Þ

Expanding the right-hand side of Equation (A18), and

keeping only the term linear in eav leads to

Dc

D
¼ 1þ 1

2

Dc

D

� �2

0

eav ðA19Þ

In the absence of interactions, a¼ 0 and Dc

D
¼ Dc

D

� �
0
,

Equation (A19) may be solved for Dc

D

� �
0
as

Dc

D

� �
0

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

p

v
¼ 1þ 1

2
v ðA20Þ

where the second equality indicates the first order approxi-

mation which should be valid at low filler content. Substi-

tuting this expression in Equation (A19) leads to

Dc

D
¼ 1þ 1

2
ea vþ v2 þ 1

4
v3

� �
ðA21Þ

which at low values of v reduces to

Dc

D
¼ 1þ 1

2
eav ðA22Þ

The relationship given by Equation (A22) is based on

Equation (A17) which is valid if the particles are densely

packed in a cluster and that there are no voids. In the

presence of voids, the front factor ½ in Equation (A22) is

expected to be larger. In the following paragraphs, we

derive the analog of Equation (A22) without the dense

packing assumption.

Let the positions of the LHE’s of the projections in a

cluster be denoted by x1, x2,. . ., xn. The distance x from x1 to

x2 has a geometric distribution which may be approximated

by the exponential distribution. The probability p that x2
will be in the interval (x1, x1þD) is

p ¼
ðD
0

le�lxdx ¼ 1� e�lD ðA23Þ

where, l is the parameter of the distribution. But this

probability is equal to the probability of having at least one

xi in the interval (x1, x1þD), and from the discussion of the

preceding paragraphs, this is 1–e�a. Therefore, l¼ a/D.

The number k of successive overlaps until there is no

overlap is given by the geometric distribution (1–p)pk

where p is given by Equation (A6) above. The mean E(k) of

the successive overlaps is given as

EðkÞ ¼ p

1� p
¼ ea � 1 ðA24Þ

If a cluster has k overlapping segments, the total length

of the cluster is the length D of the rightmost segment plus

the k� 1 random distances between the LHE of any

segment and the LHE of the next segment to its right.

These distances are distributed exponentially, subject to
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the condition that each should be less than D so that

they are overlapping segments. This conditional distribu-

tion is

pðxj0 < x < DÞ ¼ le�lx

1� e�lD ðA25Þ

The mean E(x) of this distribution is

EðxÞ ¼
ðD
0

x
le�lx

1� e�lD dx ¼ 1

l
� D

elD � 1
ðA26Þ

The sum S of the k� 1 random distances is also a random

variable. Its mean value E(S) is given as the product of the

mean of k and the mean of x

EðSÞ ¼ EðkÞEðxÞ ¼ ðea � 1Þ 1

l
� D

ea � 1

� �
¼ ea � 1

l
� D

ðA27Þ

Adding the length D of the last segment, the mean cluster

sizeDc is obtained as

Dc ¼
ea � 1

a
D ðA28Þ

where the equality l¼ a/D is used. Solving Equation (A28)

for Dc=D, expanding the right-hand side to the first order

in a and using Equation (A3) and the equality a¼ a0e
a leads

to

Dc

D
¼ 1þ 3

4

Dc

D

� �2

0

eav ðA29Þ

In the absence of interactions, we have

Dc

D

� �
0

¼ 1þ 3

4

Dc

D

� �2

0

v ðA30Þ

Solution of this equation for Dc=D
� �

0 leads to

Dc

D

� �
0

¼ 2

3v
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3v

p� �
ðA31Þ

Expanding Equation (A31) into Taylor’s series and keeping

the first order term in v leads to

Dc

D

� �
0

¼ 1þ 3

4
v ðA32Þ

It is to be noted that Dc=DÞ0
�

obtained by Equation (A20)–

(A32) are different because the former was obtained under

the assumption of compact arrangement of particles in a

cluster whereas the latter was not.

Substituting Equation (A32) in Equation (A29) leads,

within the first-order approximation, to

Dc

D
¼ 1þ 3

4
eav ðA33Þ

Equation (A33) is the main result of the present study, and

is given in the text as Equation (3). The factor of 1/2 that

appears in Equation (A22) is now given,more rigorously, as

3/4.
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[24] M. Klüppel, R. H. Schuster, G. Heinrich, Rubber Chem.
Technol. 1997, 70, 243.

[25] J. E. Mark, B. Erman, ‘‘Rubberlike Elasticity: A Molecular
Primer’’, Wiley, New York 1988.

[26] W. J. Ewens, G. R. Grant, ‘‘Statistical Methods in
Bioinformatics: An Introduction’’, Springer, New York
2001, Chapter 5.

[27] P. J. Flory, ‘‘Principles of Polymer Chemistry’’, Cornell
University Press, Ithaca, New York 1953.

[28] M. Rubinstein, R. H. Colby, ‘‘Polymer Physics’’, Oxford
University Press, Oxford 2003.

[29] J. N. Israelachvili, ‘‘Intermolecular and Surface Forces’’,
Academic Press, London 1991.

1524 M. M. Demir, Y. Z. Menceloglu, B. Erman

Macromol. Chem. Phys. 2006, 207, 1515–1524 www.mcp-journal.de � 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


