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Abstract

This paper presents a new theoretical approach for the description of quasiadiabatic evolution of thermodynamic observables.
The new method extends the projection operator technique by considering time-dependent projectors. A master equation is
derived in the limit of a slow or adiabatic evolution and is applied to calculate the rate of saturation of dipolar order in a slowly
rotating sampleTo cite thisarticle: T. Charpentier et al., C. R. Physique 5 (2004).
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Résumé

Saturation dans la limite quasiadiabatique : une approche par un formalisme de projecteurs dépendant du temps.

Nous présentons une nouvelle approche théorique pour décrire I'évolution quasiadiabatique de grandeurs thermodynamiques.
Cette nouvelle méthode est basée sur la technique des opérateurs de projection mais en considérant des opérateurs dépendar
du temps. Une équation pilote est établie dans la limite adiabatique. Nous appliquons notre formalisme pour calculer le taux de
saturation de I'ordre dipolaire en présence de rotation lente de I'échanBtan citer cet article: T. Charpentier etal., C. R.

Physique 5 (2004).
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1. Introduction

The thermodynamical spin temperature concept is the framework of a general theory of nuclear magnetism in solids which
has been extensively studied in the past [1,2]. Numerous theoretical and experimental studies of the evolution of dipolar order
under the influence of various external or internal interactions have been carried out. Of particular interest in connection with
the present work are studies of the influence of a slow rotation of the sample on the dipolar order [3-5] in high magnetic
field. It was first experimentally observed in [3] that the dipolar order lifetime is shortened by sample rotation according to a
phenomenological expression of the forpiTip = a + bvrzot. From a mathematical point of view, as the samples rotates, the
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dipolar Hamiltonian no longer commutes with itself at different times. Physically, this leads to the saturation of dipolar order
because spins are incapable of following the motion and undergo specific (two-particle) lagging out of phase. In [4], the same
phenomenon was analyzed experimentally but during spin-locking.

Theoretically, to deal with the problem of a slowly (adiabatically) varying Hamiltonian, a formalism has been described
in [5] and the square dependence of the saturation upon the rotation speed was established. Here, we propose a new formal and
general theory based on an extension of the Nakajima—Zwanzig projection technique [6,7].

2. Thetime-dependent projection techniques

The general purpose of the projection operator technique [2] is to decouple a set of configurations of the spin system
described by a set of observables of interest, here denéted’he other degrees of freedom are treated as a bath of
configurations to which the coupling induces a saturation if coherent motion is considered or a relaxation in the case of
incoherent motion. Of great importance is the choice of Aheperators from which depends the accuracy and the physical
relevance of the derived equations. The spin temperature theory [1] is of greatest help in making the correct (relevant) choice of
the A; operators which define a projection super-operatas

Z [4; (1D){A; 0]

A — (AT A — +4. N
A (AjlAj) = (AT Aj) = Tr{ATA;}/Tr{1) oc 8. 1)

The projection super-operatant) = 1 — # (¢) is also introduced. For the sake of ilisity and without loss of generality,
we will assume that thd; are independent observables, i.e., they commitér), A ()] = 0 at any time, and the Hamiltonian
of system can be expanded Hgt) = ) ; o; A; (r). These assumptions hold for most of cases encountered in solid-state NMR
experiments.

Let |p (1)) be the spin density operator of the system under cenaiithn. It obeys the Lioulle—Von Neumann equation

d . 4
g [P®O)=—1l[H®. p]) = —ILO|p 1) )

where/ is the time-dependent Liouville super-operator. Similarly to the time-independent case, one can check that
AOLO) =LORE) =0, and 7MOLE) =L@)7@) =L@®). (3)
Multiplying Eq. (2) on the left byt () andz (1), and applying Egs. (3) leads to

. .d A A

A0 lp(0O)= =7 OLO|p (1) =0, 4

2~ d . A A ~ a .4 a

7O ) == OLOGE O +7 1) |p(0) = —ILOTD]p () ®)
We introduce the super-operato;fts{t) = d7r(¢)/dt, andfr(t) :A—fz(t) in order to evaluate the time derivative of the

‘diagonal’ and’ off-diagonal’ parts of the density operatat [p) andn|p), respectively) as follows

d, . _ N E FN x2
a(mp)) o) +7 4 lp) =7F1p) + A7 |0), (6)
d A 2~ d 2 2 . AA é A . 4 “ AN\ 2
g @) =7lp) + 7 lp) = (7 +7)Ip) —iL7|p) = —aft|p) —i(L ~in)7|p). (7)
Eq. (7) can be formally integrated to
t
2(0)]p0)=S(t,07(0)] p(0)) - / S, ) (D)% (1) p(0)) dr, ®)
0

where

t
S, 1) =Texp{—i/(ﬁ(u) — i (u)) du}. 9)
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Assuming that, at time= 0, p is ‘diagonal’ (i.e., 7 (0)|0(0)) = 0), and inserting Eq. (8) in Eq. (6), we arrive at the master
equation

t
d . . —~ .
G EO[0) =20FO]o0) = F0) / St DA p(0)) dr. (10
0

The use of the relatioi# = —ﬁfr shows that when multiplying on the left Eq. (10) by; (¢)], the first term of the right-
hand side cancels. Consequently, this term does not play any role in the evolutiondiégjoeal’ part of the density operator.
We shall therefore prefer the following final form of the master equation (making usé &f= 0)

1
d : —~ .
05 @FOpO) =-2OF® / 5@, ()7 (0)]p(1))dr. (11)
0

This form is very similar to the time-independent form but with a modified super-propagator and ﬁaplag’ng the role
of the perturbation, as expected.

3. Evolution of the dipolar spin temperature

We apply now our formalism to calculate the rate of saturation of the dipolar order in a slowly rotating sample at spin rate
wrot = 2 vrot. The observable of interest is the secular part of the dipolar Hamiltonian, defgtéd, as the Zeeman order is
not affected by this motion{ {7, Hp ()] = 0). Consequently, the projection super-operator is
LAl | [Hp@®)(Hp®)|
U1 (HpOIHp®)’
and, as a result, theliagonal’ part of the density operator

#(O|p®)=11) — Bp®)|Hp @), (13)

wherep(¢) is the dipolar (inverse) spin temperature. The purpose of the present section is to obtain the master equation of
Bp(t). Starting from Eq. (11), multiplying the left-hand side term{#j, (¢)| gives

Bp@) d

7)) = (12)

d .
(HD(t)‘a(ﬂD(t)‘HD(l‘))):,BD(t)<HD(t)2>+ > E(Hu(t)z)- (14)
Introducing|D) = 7?|HD>,
; . . (HplHp)
= = T T 2 1
|D) =7n|Hp)=I|Hp) (Hpd) |Hp), (15)
we obtain
t
d d
afP= ﬁDz(t)E<H0(t)2>—/M(I,T)ﬂn(f)df, (16)
0
where the memory functioM (¢, 7) is defined as
M, 1) (D®)|S(1, )| D(v)) dr. (17)

(Hp(1)?)

It can be easily checked from Eq. (15) thalt(¢)) is orthogonal to|Hp (1)) (i.e., (D(t)|Hp(t)) = 0). Furthermore, one
recognizes the first term of the right-hand side of Eq. (16) as being the adiabatic contribution to the evolution of the dipolar spin
temperature. It is therefore useful to introduce a new slow varying spin tempeﬁ%utefined as

B Hp(0)2 1/2 _
ﬁD(t)—{Hsz} Bp (1), (18)

which evolves as

t
d ~ ~ ~
Pp=- / Mt —0)fp( — 1) dr, (19)
0
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where the memory function, within thigliabatic frame, is

Mt —1)= (DS 1 —D)|DE — 1)) (20)
JHp 0 (Hp( - 0)?)
Egs. (19) and (20) are exact and can be applied to any kind of motion of the sample. Simplifications are introduced in the
next section.

4. Formal calculation of the saturation rate

Considering the nature of the spin system under consideration, some approximations can be made which simplify the
previous equations into a tractable form. First, we assume that the rotation is sufficiently slow so that the contribution of
the term f (u) in Eq. (9) can be fully neglected with respectﬂ;()u) Secondly, as a function af, M(t,t — 7) decreases in
a time which is of the same order of magnitudeTas This time is much shorter than the period of rotation so that we can
neglect the variations (ﬁ(u) in Eq. (9), as well as differences betweHp (1) and Hp (t — 7), and betweeD (1) and D (¢ — 7).
Accordingly, for short timer (< 7»), Eq. (20) can be simplified into

~ 1 o
M(t,t —1)=———(D(@)|eXpl—iL()T}|D(1)). (22)
G Polesd-itor)|pa)
As we consider time much longer tharf,, the upper limit of integration of Eq. (19) can be extendedd@iving
d ~ —~
EﬂD =—-W(@)Bp (@), (22)
where the saturation rat®(¢) is
1 o0
W)= 7/ D) exp{—iL@)z}| D)) dr. (23)
iy | POl igorDo)
At this stage, we introduce the autocorrelation functfan, t)
1
fit, )= D(t)| ex —|£(t)r D(t) (24)
Do Poles-iLor|po)

A natural time scale for the dependencefaf, t) on the timer can be defined by an instantaneous second moméit
(ID@), HpMI[Hp (1), D(t)]>

)= 25
" (D0 @
Using f (¢, 7) (Eq. (24)) andn(¢) (Eg. (25)), the saturation rate (Eq. (23)) can be transformed into
AW (D3

W(t) = I 26

O="Tn® Hp?) 2
whereA(t) is a dimensionless quantity

T

One can see clearly the advantages of Eq. (26) in the evaluation of the saturation rate: calcutation @b(s)2) and
(Hp(H)2) implies lattice sums over groups of three spins; only the evaluatiet(0f which is dimensionless and of the order
of unity, requires some assumptions for modellif@, 7). As an example, using a Gaussian model

2
£, :exp(—m(;)r ) (28)

a time-independent value of(¢) is obtained:A(¢) = /7 /2. In order of magnituden(t) ~ My = |0C (M5 is the second

moment of the static spectrum aag, is the local frequency) andD(1)2) « wr20t<HD ()2), the order of magnitude of the
saturation rate is

w2
W(r) o« —ot (29)
Wloc
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in agreement with previous approaches [3-5]. Moreover, after some straightforward calculations (see 6), it turns out that
our expression of the saturation rate Eq. (26) is identical to Eqgs.(31) and (32) of [5]. If both approaches rely on the same
approximations (the system can be characterized by a single (dipolar) spin temperatuyg afifl 1), the formalisms differ
completely. The present one is a natural extension of the Nakijima—Zwanzig [6,7] (time-independent) projection operators
techniques, widely applied in nogeilibrium statistical mechanics.

5. Application to a powder sample of adamantane
5.1. Experimental results

Experiments have been performed on a Bruker Avance 300 NMR spectrometer using a commercial Bruker MAS 4 mm o.d.
probe and a powder sample of adamantane rotating at the magic angle. Jeener—Broekaert sequence [8] has been used for the
measurements of the dipolar spin temperature at different spinning speeds. Results of the experiments are shown in Fig. 1. Itis

seen that each saturation curve can be well fitted using a single exponential decay. As shown in Fig. 1 (bottom), variation of the
saturation rate upon the spinning speed is in good agreement with Eq. (29).

5.2. Calculation of the saturation rate
From Egs. (18) and (22), the evolution of dipolar spin temperature is given by
t
Hn(0)2)\ 1/2
B = mm(%) ep -~ [ Waduy. (30)
(Hp()%) 5

For a powder sample, Eq. (30) must be averaged over all orientations. This averaging is deriofrdrathe remainder
of the text. Using the Gaussian approximation (Egs. (27) and (28)), and considering the Jeener—Broekaert sequence [8] for

ooV, =200H:

—a th=300 Hz

*—— sz:400 Hz

A—a v =600Hz

Bp(t)

<«— V_ =800 Hz

rot

800 300 400 500 600 700 800
v_(Hz)

rot

Fig. 1. Top: Variation of the dipolar spin temperatytg (¢) in a rotating adamantane powder sample at the magic angle. Solid lines represent
the fits of the experimental data using single exponential decays-&Xp. Bottom: variation of the saturation rat€ with respect toyot. In
the non-rotating sampld;;p = 0.48 s andA = 0.00882 s.
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preparing the dipolar order, Eq. (30) has been evaluated numerically for adamantane sample rotating at 200 Hz (calculations
will be detailed elsewhere). The resulting cukyg, (¢))pc (data not shown)

Hn(0)2)\ 1/2 p
(ﬂD<t>>pC:<ﬂD<0>(%) exp{— / W(t)dt}> , (31)
D
0 pc

can be fitted very accurately by a single exponential decay with a saturatioigate= 216 Hz. Thus, we expect that Eq. (31)
can be approximated as

<HD(0)2>>1/2>
_— —(W . 32
(Hp(1)?) pCEXp{ (Wiper} (52

Using this approximatioW)pc is time-independent and a numerical calculation gif#$pc = 218 Hz, very close to
Wnum. Experimental value i#exp = 337 Hz, in satisfactory agreement with our calculations, considering the simple model for
the autocorrelation functiofi (¢, v) (Eq. (24)). A more sophisticated model will be presented elsewhere.

(B0l (00

6. Conclusion
A new theoretical approach has been proposed for the description of quasiadiabatical saturation phenomena. The method is

rigorous and general and reproduce the results of Jeener et al. [5] using a quite different mathematical formalism. We hope that
the present method can be applied to many other problems.
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Appendix

The aim of this appendix is to show that Eqgs. (22)—(24) give the same result as Egs. 27J and 28J. Here and below the letter 'J’
in the equation number indicates, that the equation is thkam [5]. The dimensionless observable of inter&st), as defined
in Eq.7J, can be connected My, (1) through

~ Hp(t)
= 33
o (Hp(1)?)1/2 33)
giving
d ~ D)
— =" 34
a’t (Hp(1)?)1/2 39

It is evident from Egs. 27J and 28J that the funct@©f — 1) is C (7o, r — t1), because of its dependence upgnWithin
the expected range opplicability of these equations we should choage=¢ in C(tg,t — 1) and inﬁ(to) on right-hand side
of Eq. 27J. Now we see that(z, r — 11) coincides with ourf (¢, 7 — t1) (EQ. (24)), and with these corrections Eqgs. 27J and 28J
coincides with our Egs. (22)—(24). Of course, the results coincide after introducing of Gaussian approximation (Eq. (28)) and
(Eq. 31d) forf(t,t —t1) =C(t,t — 17).
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