308 research outputs found
Ab initio simulation of a tensile test in MoSi\u3csub\u3e2\u3c/sub\u3e and WSi\u3csub\u3e2\u3c/sub\u3e
The tensile test in transition metal disilicides with C11b structure is simulated by ab initio electronic structure calculations using full potential linearized augmented plane wave method (FLAPW). Full relaxation of both external and internal parameters is performed. The theoretical tensile strength of MoSi2 and WSi2 for [001] loading is determined and compared with those of other materials
Non-linear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene
We investigate non-linear elastic deformations in the phase field crystal
model and derived amplitude equations formulations. Two sources of
non-linearity are found, one of them based on geometric non-linearity expressed
through a finite strain tensor. It reflects the Eulerian structure of the
continuum models and correctly describes the strain dependence of the
stiffness. In general, the relevant strain tensor is related to the left
Cauchy-Green deformation tensor. In isotropic one- and two-dimensional
situations the elastic energy can be expressed equivalently through the right
deformation tensor. The predicted isotropic low temperature non-linear elastic
effects are directly related to the Birch-Murnaghan equation of state with bulk
modulus derivative for bcc. A two-dimensional generalization suggests
. These predictions are in agreement with ab initio results for
large strain bulk deformations of various bcc elements and graphene. Physical
non-linearity arises if the strain dependence of the density wave amplitudes is
taken into account and leads to elastic weakening. For anisotropic deformations
the magnitudes of the amplitudes depend on their relative orientation to the
applied strain.Comment: 16 page
Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides
Carbides play a central role for the strength and ductility in many
materials. Simulating the impact of these precipitates on the mechanical
performance requires the knowledge about their atomic configuration. In
particular, the C content is often observed to substantially deviate from the
ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C
steels, for which we determined the composition of the nano-sized kappa
carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger
precipitates located in grain boundaries. Combining density functional theory
with thermodynamic concepts, we first determine the critical temperatures for
the presence of chemical and magentic disorder in these carbides. Secondly, the
experimentally observed reduction of the C content is explained as a compromise
between the gain in chemical energy during partitioning and the elastic strains
emerging in coherent microstructures
Macroscopic Elastic Properties of Textured ZrN--AlN Polycrystalline Aggregates: From Ab initio Calculations to Grain-Scale Interactions
Despite the fast development of computational materials modelling,
theoretical description of macroscopic elastic properties of textured
polycrystalline aggregates starting from basic principles remains a challenging
task. In this communication we use a supercell-based approach to obtain the
elastic properties of random solid solution cubic ZrAlN system as a function of
the metallic sublattice composition and texture descriptors. The employed
special quasi-random structures are optimised not only with respect to short
range order parameters, but also to make the three cubic directions
, , and as similar as possible. In this way,
only a small spread of elastic constants tensor components is achieved and an
optimum trade-off between modelling of chemical disorder and computational
limits regarding the supercell size is achieved. The single crystal elastic
constants are shown to vary smoothly with composition, yielding
-0.5 an alloy constitution with an almost isotropic response.
Consequently, polycrystals with this composition are suggested to have Young's
modulus independent on the actual microstructure. This is indeed confirmed by
explicit calculations of polycrystal elastic properties, both within the
isotropic aggregate limit, as well as with fibre textures with various
orientations and sharpness. It turns out, that for low AlN mole fractions, the
spread of the possible Young's moduli data caused by the texture variation can
be larger than 100 GPa. Consequently, our discussion of Young's modulus data of
cubic ZrAlN contains also the evaluation of the texture typical for thin films.Comment: 10 pages, 6 figures, 3 table
1) Design of new Ti-based biomaterials by using ab-initio simulations, FEM, and experiments 2) Detailed analysis of an indent
Motivation Theoretical methods Experimental methods Results Conclusion
Structure and magnetism in ultrathin iron oxides characterized by low energy electron microscopy
We have grown epitaxial films a few atomic layers thick of iron oxides on
ruthenium. We characterize the growth by low energy electron microscopy. Using
selected area diffraction and intensity vs. voltage spectroscopy, we detect two
distinct phases which are assigned to wustite and magnetite. Spin polarized low
energy electron microscopy shows magnetic domain patterns in the magnetite
phase at room temperature.Comment: 21 pages, 10 figures, for J. Phys Cond Matt special LEEM/PEEM issue
in honor of E. Baue
Ab initio study of the half-metal to metal transition in strained magnetite
Using density-functional theory, we investigate the stability of the half-metallic ground state of magnetite under different strain conditions. The effects of volume relaxation and internal degrees of freedom are fully taken into account. For hydrostatic compression, planar strain in the (001) plane and uniaxial strain along the [001] direction, we derive quantitative limits beyond which magnetite becomes metallic. As a major new result, we identify the bond length between the octahedrally coordinated iron atoms and their neighbouring oxygen atoms as the main characteristic parameter, and we show that the transition occurs if external strain reduces this interatomic distance from 2.06 angstrom in equilibrium to below a critical value of 1.99 angstrom. Based on this criterion, we also argue that planar strain due to epitaxial growth does not lead to a metallic state for magnetite films grown on (111)-oriented substrates
- …