6 research outputs found

    Ferromagnetic MnSb2Te4: A p-type topological insulator with magnetic gap closing at high Curie temperatures of 45-50K

    Get PDF
    Resumen del trabajo presentado al APS March Meeting, celebrado de forma virtual del 13 al 19 de marzo de 2021Mn enables the formation of intrinsic magnetic topological insulatorsfor the quantum anomalous Hall effect with A1B2C4 stoichiometry, e. g., antiferromagnetic MnBi2Te4 with 25 K Néel temperature. Here, we showthat p-type MnSb2Te4, previously considered topologically trivial, is a ferromagnetic topological insulator with high Curie temperature of 45 to 50 K.It displays out-of-plane magnetic anisotropy, the nontrivial topology is robust in band structure calculations towards magnetic disorder, provides aDirac point of the topological surface state close to the Fermi level with out-of-plane spin polarization in spin-ARPES, and exhibits a magneticallyinduced band gap of 17 meV that closes at the Curie temperature as demonstrated by scanning tunneling spectroscopy. Moreover, it displays acritical exponent of magnetization β≈1, indicating the vicinity of a quantum critical point. We identify the influences of structural and magneticdisorder that render MnSb2Te4 the ideal system for tuning electric and magnetic properties of quantum anomalous Hall systems.Peer reviewe

    Observation of a giant mass enhancement in the ultrafast electron dynamics of a topological semimetal

    Get PDF
    Topological phases of matter offer exciting possibilities to realize lossless charge and spin information transport on ultrafast time scales. However, this requires detailed knowledge of their nonequilibrium properties. Here, we employ time-, spin- and angle-resolved photoemission to investigate the ultrafast response of the Sb(111) spin-polarized surface state to femtosecond-laser excitation. The surface state exhibits a giant mass enhancement which is observed as a kink structure in its energy-momentum dispersion above the Fermi level. The kink structure, originating from the direct coupling of the surface state to the bulk continuum, is characterized by an abrupt change in the group velocity by ~70%, in agreement with our GW-based band structure calculations. Our observation of this connectivity in the transiently occupied band structure enables the unambiguous experimental verification of the topological nature of the surface state. The influence of bulk-surface coupling is further confirmed by our measurements of the electron dynamics, which show that bulk and surface states behave as a single thermalizing electronic population with distinct contributions from low-k electron-electron and high-k electron-phonon scatterings. These findings are important for future applications of topological semimetals and their excitations in ultrafast spintronics

    Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45-50 K

    Get PDF
    Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits. The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi2Te4 is, however, antiferromagnetic with 25 K Neel temperature and is strongly n-doped. In this work, p-type MnSb2Te4, previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i) Ferromagnetic hysteresis with record Curie temperature of 45-50 K, ii) out-of-plane magnetic anisotropy, iii) a 2D Dirac cone with the Dirac point close to the Fermi level, iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy, and v) a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy (STS), are shown. Moreover, a critical exponent of the magnetization beta approximate to 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn-Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulators

    The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions

    Get PDF
    Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE(1)-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis

    Prediction and observation of an antiferromagnetic topological insulator

    No full text
    Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics, such as the quantum anomalous Hall effect and chiral Majorana fermions. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic and electronic properties of these materials, restricting the observation of important effects to very low temperatures. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBiTe. The antiferromagnetic ordering that MnBiTe shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ topological classification; ℤ = 1 for MnBiTe, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBiTe exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling and axion electrodynamics. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect and chiral Majorana fermions.We acknowledge support by the Basque Departamento de Educacion, UPV/EHU (grant number IT-756-13), the Spanish Ministerio de Economia y Competitividad (MINECO grant number FIS2016-75862-P), and the Academic D.I. Mendeleev Fund Program of Tomsk State University (project number 8.1.01.2018). Support from the Saint Petersburg State University grant for scientific investigations (grant ID 40990069), the Russian Science Foundation (grants number 18-12-00062 for part of the photoemission measurements and 18-12-00169 for part of the calculations of topological invariants and tight-binding bandstructure calculations), the Russian Foundation for Basic Research (grant number 18-52-06009), and the Science Development Foundation under the President of the Republic of Azerbaijan (grant number EİF-BGM-4-RFTF-1/2017-21/04/1-M-02) is also acknowledged. M.M.O. acknowledges support by the Diputación Foral de Gipuzkoa (project number 2018-CIEN-000025-01). I.I.K. and A.M.S. acknowledge partial support from the CERIC-ERIC consortium for the stay at the Elettra synchrotron. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (proposal numbers 18AG020, 18BU005). The support of the German Research Foundation (DFG) is acknowledged by A.U.B.W., A.I. and B.B. within Collaborative Research Center 1143 (SFB 1143, project ID 247310070); by A.Z., A.E. and A.I. within Special Priority Program 1666 Topological Insulators; by H.B. and F.R. within Collaborative Research Center 1170; and by A.Z. and A.I. within the ERANET-Chemistry Program (RU 776/15-1). H.B., A.U.B.W., A.A., V.K., B.B., F.R. and A.I. acknowledge financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project ID 39085490). A.E. acknowledges support by the OeAD grant numbers HR 07/2018 and PL 03/2018. This work was also supported by the Fundamental Research Program of the State Academies of Sciences, line of research III.23. A.K. was financially supported by KAKENHI number 17H06138 and 18H03683. I.P.R. acknowledges support by the Ministry of Education and Science of the Russian Federation within the framework of the governmental program Megagrants (state task number 3.8895.2017/P220). E.V.C. acknowledges financial support by the Gobierno Vasco-UPV/EHU project (IT1246-19). S.K. acknowledges financial support from an Overseas Postdoctoral Fellowship, SERB-India (OPDF award number SB/OS/PDF-060/2015-16). J.S.-B.acknowledges financial support from the Impuls-und Vernetzungsfonds der Helmholtz-Gemeinschaft under grant number HRSF-0067 (Helmholtz-Russia Joint Research Group). The calculations were performed in Donostia International Physics Center, in the research park of Saint Petersburg State University Computing Center (http://cc.spbu.ru), and at Tomsk State Universit
    corecore