18 research outputs found

    Restriction fragment length polymorphisms among the flagellar genes of the Lior heat-labile serogroup reference strains and field strains of Campylobacter jejuni and C. coli

    Get PDF
    Several typing systems have been described for Campylobacter jejuni and C. coli, to assess the complex epidemiology of these important enteric pathogens. In the present study two typing methods, slide agglutination according to the Lior scheme, and the demonstration of restriction-fragment length polymorphisms (RFLP) of flagellar genes, have been used in parallel on a set of 194 strains. This set comprised 118 sero-reference strains of C. jejuni and C. coli of the Lior scheme, as well as 76 clinical isolates. All isolates were serotyped and subjected to PCR for amplification of flagellar genes, and the PCR product was restricted with Alu I. Flagellar genes could be amplified in 152 strains. Among 85 seroreference strains, 74 different RFLP patterns were observed, and among 67 clinical isolates, there were 36 patterns. There was only limited correlation between flagellar RFLP and the Lior serogroup, and the variability of patterns in serogroups HL2 and HL4 were as marked as the variability between serogroups. Flagellar gene RFLP patterns are shown to be stable, highly discriminatory epidemiologic marker

    Diffusive and Ballistic Transport in Ultra-thin InSb Nanowire Devices Using a Few-layer-Graphene-AlOx Gate

    Full text link
    Quantum devices based on InSb nanowires (NWs) are a prime candidate system for realizing and exploring topologically-protected quantum states and for electrically-controlled spin-based qubits. The influence of disorder on achieving reliable topological regimes has been studied theoretically, highlighting the importance of optimizing both growth and nanofabrication. In this work we investigate both aspects. We developed InSb nanowires with ultra-thin diameters, as well as a new gating approach, involving few-layer graphene (FLG) and Atomic Layer Deposition (ALD)-grown AlOx. Low-temperature electronic transport measurements of these devices reveal conductance plateaus and Fabry-P\'erot interference, evidencing phase-coherent transport in the regime of few quantum modes. The approaches developed in this work could help mitigate the role of material and fabrication-induced disorder in semiconductor-based quantum devices.Comment: 14 pages, 5 figure

    Restriction fragment length polymorphisms among the flagellar genes of the Lior heat-labile serogroup reference strains and field strains of Campylobacter jejuni and C. coli.

    Get PDF
    Several typing systems have been described for Campylobacter jejuni and C. coli, to assess the complex epidemiology of these important enteric pathogens. In the present study two typing methods, slide agglutination according to the Lior scheme, and the demonstration of restriction-fragment length polymorphisms (RFLP) of flagellar genes, have been used in parallel on a set of 194 strains. This set comprised 118 sero-reference strains of C. jejuni and C. coli of the Lior scheme, as well as 76 clinical isolates. All isolates were serotyped and subjected to PCR for amplification of flagellar genes, and the PCR product was restricted with Alu I. Flagellar genes could be amplified in 152 strains. Among 85 seroreference strains, 74 different RFLP patterns were observed, and among 67 clinical isolates, there were 36 patterns. There was only limited correlation between flagellar RFLP and the Lior serogroup, and the variability of patterns in serogroups HL2 and HL4 were as marked as the variability between serogroups. Flagellar gene RFLP patterns are shown to be stable, highly discriminatory epidemiologic markers

    Understanding and Promoting Molecular Interactions and Charge Transfer in Dye-Mediated Hybrid Photovoltaic Materials

    No full text
    The performances of hybrid organic–inorganic photovoltaics composed of conjugated polymers and metal oxides are generally limited by poor electronic coupling at hybrid interfaces. In this study, physicochemical interactions and bonding at the organic–inorganic interfaces are promoted by incorporating organoruthenium dye molecules into self-assembled mesostructured conjugated polymer–titania composites. These materials are synthesized from solution in the presence of surfactant structure-directing agents (SDA) that solubilize and direct the nanoscale compositions and structures of the conjugated polymer, dye, and inorganic precursor species. Judicious selection of the SDA and dye species, in particular, exploits interactions that direct the dye species to the inorganic–organic interfaces, leading to significantly enhanced electronic coupling, as well as increased photoabsorption efficiency. This is demonstrated for the hydrophilic organoruthenium dye N3, used in conjunction with alkyleneoxide triblock copolymer SDA, polythiophene conjugated polymer, and titania species, in which the N3 dye species are localized in molecular proximity to and interact strongly with the titania framework, as established by solid-state NMR spectroscopy. In contrast, a closely related but more hydrophobic organoruthenium dye, Z907, is shown to interact more weakly with the titania framework, yielding significantly lower photocurrent generation. The strong SDA-directed N3-TiO<sub><i>x</i></sub> interactions result in a significant reduction of the lifetime of the photoexcited state and enhanced macroscopic photocurrent generation in photovoltaic devices. This study demonstrates that multicomponent self-assembly can be harnessed for the fabrication of hierarchical materials and devices with nanoscale control of chemical compositions and surface interactions to improve photovoltaic properties

    Diffusive and ballistic transport in thin InSb nanowire devices using a few-layer-graphene-AlO x gate

    No full text
    Quantum devices based on InSb nanowires (NWs) are a prime candidate system for realizing and exploring topologically-protected quantum states and for electrically-controlled spin-based qubits. The influence of disorder on achieving reliable quantum transport regimes has been studied theoretically, highlighting the importance of optimizing both growth and nanofabrication. In this work, we consider both aspects. We developed InSb NW with thin diameters, as well as a novel gating approach, involving few-layer graphene and atomic layer deposition-grown AlO _x . Low-temperature electronic transport measurements of these devices reveal conductance plateaus and Fabry–Pérot interference, evidencing phase-coherent transport in the regime of few quantum modes. The approaches developed in this work could help mitigate the role of material and fabrication-induced disorder in semiconductor-based quantum devices
    corecore