655 research outputs found

    Design and First Tests of a Radiation-Hard Pixel Sensor for the European X-Ray Free-Electron Laser

    Full text link
    The high intensity and high repetition rate of the European X-ray Free-Electron Laser, presently under construction in Hamburg, requires silicon sensors which can stand X-ray doses of up to 1 GGy for 3 years of operation at high bias voltage. Within the AGIPD Collaboration the X-ray-radiation damage in MOS Capacitors and Gate-Controlled Diodes fabricated by four vendors on high-ohmic n-type silicon with two crystal orientations and dif- ferent technological parameters, has been studied for doses between 1 kGy and 1 GGy. The extracted values of oxide-charge and surface-current densi- ties have been used in TCAD simulations, and the layout and technological parameters of the AGIPD pixel sensor optimized. It is found that the op- timized layout for high X-ray doses is significantly different from the one for non-irradiated sensors. First sensors and test structures have been de-livered in early 2013. Measurement results for X-ray doses of 0 to 10 MGy and their comparison to simulations are presented. They demonstrate that the optimization has been successful and that the sensors fulfill the required specifications

    Silicon Sensors implemented on p-type substrates for high radiation resistance applications

    Get PDF
    Silicon based micropattern detectors are essential elements of modern high energy physics experiments. Cost effectiveness and high radiation resistance are two important requirements for technologies to be used in inner tracking devices. Processes based on p-type substrates have very strong appeal for these applications. Recent results and prototype efforts under way are reviewed.Comment: 7 pages, 2 figures; invited paper at Vertex 2006, Perugia, Italy, september 200

    Radiation Induced Point and Cluster-Related Defects with Strong Impact to Damage Properties of Silicon Detectors

    Full text link
    This work focuses on the investigation of radiation induced defects responsible for the degradation of silicon detectors. Comparative studies of the defects induced by irradiation with 60Co- rays, 6 and 15 MeV electrons, 23 GeV protons and 1 MeV equivalent reactor neutrons revealed the existence of point defects and cluster related centers having a strong impact on damage properties of Si diodes. The detailed relation between the microscopic reasons as based on defect analysis and their macroscopic consequences for detector performance are presented. In particular, it is shown that the changes in the Si device properties after exposure to high levels of 60Co- doses can be completely understood by the formation of two point defects, both depending strongly on the Oxygen concentration in the silicon bulk. Specific for hadron irradiation are the annealing effects which decrease resp. increase the originally observed damage effects as seen by the changes of the depletion voltage. A group of three cluster related defects, revealed as deep hole traps, proved to be responsible specifically for the reverse annealing. Their formation is not affected by the Oxygen content or Si growth procedure suggesting that they are complexes of multi-vacancies located inside extended disordered regions.Comment: 14 pages, 15 figure

    Investigation of X-ray induced radiation damage at the Si-SiO2 interface of silicon sensors for the European XFEL

    Full text link
    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of X-ray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations and produced by two vendors, CiS and Hamamatsu, have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron light source. Using capacitance/conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the surface densities of oxide charges and interface traps at the Si-SiO2 interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the surface density of oxide charges and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the surface density of oxide charges and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO2 to the Si-SiO2 interface. Finally, annealing studies have been performed at 60 and 80 degree C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy and the annealing kinetics of oxide charges and surface current determined.Comment: 10 pages, 6 figures, 3 table

    Properties of a radiation-induced charge multiplication region in epitaxial silicon diodes

    Full text link
    Charge multiplication (CM) in p+^+n epitaxial silicon pad diodes of 75, 100 and 150 \upmum thickness at high voltages after proton irradiation with 1 MeV neutron equivalent fluences in the order of 101610^{16} cm2^{-2} was studied as an option to overcome the strong trapping of charge carriers in the innermost tracking region of future Super-LHC detectors. Charge collection efficiency (CCE) measurements using the Transient Current Technique (TCT) with radiation of different penetration (670, 830, 1060 nm laser light and α\alpha-particles with optional absorbers) were used to locate the CM region close to the p+^+-implantation. The dependence of CM on material, thickness of the epitaxial layer, annealing and temperature was studied. The collected charge in the CM regime was found to be proportional to the deposited charge, uniform over the diode area and stable over a period of several days. Randomly occurring micro discharges at high voltages turned out to be the largest challenge for operation of the diodes in the CM regime. Although at high voltages an increase of the TCT baseline noise was observed, the signal-to-noise ratio was found to improve due to CM for laser light. Possible effects on the charge spectra measured with laser light due to statistical fluctuations in the CM process were not observed. In contrast, the relative width of the spectra increased in the case of α\alpha-particles, probably due to varying charge deposited in the CM region.Comment: 11 pages, accepted by NIM

    3-D Printed Protective Equipment during COVID-19 Pandemic

    Get PDF
    While the number of coronavirus cases from 2019 continues to grow, hospitals are reporting shortages of personal protective equipment (PPE) for frontline healthcare workers. Furthermore, PPE for the eyes and mouth, such as face shields, allow for additional protection when working with aerosols. 3-D printing enables the easy and rapid production of lightweight plastic frameworks based on open-source data. The practicality and clinical suitability of four face shields printed using a fused deposition modeling printer were examined. The weight, printing time, and required tools for assembly were evaluated. To assess the clinical suitability, each face shield was worn for one hour by 10 clinicians and rated using a visual analogue scale. The filament weight (21-42 g) and printing time (1:40-3:17 h) differed significantly between the four frames. Likewise, the fit, wearing comfort, space for additional PPE, and protection varied between the designs. For clinical suitability, a chosen design should allow sufficient space for goggles and N95 respirators as well as maximum coverage of the facial area. Consequently, two datasets are recommended. For the final selection of the ideal dataset to be used for printing, scalability and economic efficiency need to be carefully balanced with an acceptable degree of protection

    Study of X-ray Radiation Damage in Silicon Sensors

    Full text link
    The European X-ray Free Electron Laser (XFEL) will deliver 30,000 fully coherent, high brilliance X-ray pulses per second each with a duration below 100 fs. This will allow the recording of diffraction patterns of single complex molecules and the study of ultra-fast processes. Silicon pixel sensors will be used to record the diffraction images. In 3 years of operation the sensors will be exposed to doses of up to 1 GGy of 12 keV X-rays. At this X-ray energy no bulk damage in silicon is expected. However fixed oxide charges in the insulating layer covering the silicon and interface traps at the Si-SiO2 interface will be introduced by the irradiation and build up over time. We have investigated the microscopic defects in test structures and the macroscopic electrical properties of segmented detectors as a function of the X-ray dose. From the test structures we determine the oxide charge density and the densities of interface traps as a function of dose. We find that both saturate (and even decrease) for doses between 10 and 100 MGy. For segmented sensors the defects introduced by the X-rays increase the full depletion voltage, the surface leakage current and the inter-pixel capacitance. We observe that an electron accumulation layer forms at the Si-SiO2 interface. Its width increases with dose and decreases with applied bias voltage. Using TCAD simulations with the dose dependent parameters obtained from the test structures, we are able to reproduce the observed results. This allows us to optimize the sensor design for the XFEL requirements
    corecore