340 research outputs found

    Exploration of Non-Resonant Divertor Features on the Compact Toroidal Hybrid

    Full text link
    Non-resonant divertors (NRDs) separate the confined plasma from the surrounding plasma facing components (PFCs). The resulting striking field line intersection pattern on these PFCs is insensitive to plasma equilibrium effects. However, a complex scrape-off layer (SOL), created by chaotic magnetic topology in the plasma edge, connects the core plasma to the PFCs through varying magnetic flux tubes. The Compact Toroidal Hybrid (CTH) serves as a test-bed to study this by scanning across its inductive current. Simulations observe a significant change of the chaotic edge structure and an effective distance between the confined plasma and the instrumented wall targets. The intersection pattern is observed to be a narrow helical band, which we claim is a resilient strike line pattern. However, signatures of finger-like structures, defined as heteroclinic tangles in chaotic domains, within the plasma edge connect the island chains to this resilient pattern. The dominant connection length field lines intersecting the targets are observed via heat flux modelling with EMC3-EIRENE. At low inductive current levels, the excursion of the field lines resembles a limited plasma wall scenario. At high currents, a private flux region is created in the area where the helical strike line pattern splits into two bands. These bands are divertor legs with distinct SOL parallel particle flow channels. The results demonstrate the NRD strike line pattern resiliency within CTH, but also show the underlying chaotic edge structure determining if the configuration is diverted or limited. This work supports future design efforts for a mechanical structure for the NRD.Comment: 26 pages, 16 figure

    A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2-D

    Get PDF
    A direct reconstruction algorithm for complex conductivities in W2,∞(Ω)W^{2,\infty}(\Omega), where Ω\Omega is a bounded, simply connected Lipschitz domain in R2\mathbb{R}^2, is presented. The framework is based on the uniqueness proof by Francini [Inverse Problems 20 2000], but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.Comment: This is an author-created, un-copyedited version of an article accepted for publication in [insert name of journal]. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/9/09500

    Delocalization in the Anderson model due to a local measurement

    Full text link
    We study a one-dimensional Anderson model in which one site interacts with a detector monitoring the occupation of that site. We demonstrate that such an interaction, no matter how weak, leads to total delocalization of the Anderson model, and we discuss the experimental consequencesComment: 4 pages, additional explanations added, to appear in Phys. Rev. Let

    Zeno and anti-Zeno effects for photon polarization dephasing

    Get PDF
    We discuss a simple, experimentally feasible scheme, which elucidates the principles of controlling ("engineering") the reservoir spectrum and the spectral broadening incurred by repeated measurements. This control can yield either the inhibition (Zeno effect) or the acceleration (anti-Zeno effect) of the quasi-exponential decay of the observed state by means of frequent measurements. In the discussed scheme, a photon is bouncing back and forth between two perfect mirrors, each time passing a polarization rotator. The horizontal and vertical polarizations can be viewed as analogs of an excited and a ground state of a two level system (TLS). A polarization beam splitter and an absorber for the vertically polarized photon are inserted between the mirrors, and effect measurements of the polarization. The polarization angle acquired in the electrooptic polarization rotator can fluctuate randomly, e.g., via noisy modulation. In the absence of an absorber the polarization randomization corresponds to TLS decay into an infinite-temperature reservoir. The non-Markovian nature of the decay stems from the many round-trips required for the randomization. We consider the influence of the polarization measurements by the absorber on this non-Markovian decay, and develop a theory of the Zeno and anti-Zeno effects in this system.Comment: 11 pages, 4 figure

    Global and regional brain metabolic scaling and its functional consequences

    Get PDF
    Background: Information processing in the brain requires large amounts of metabolic energy, the spatial distribution of which is highly heterogeneous reflecting complex activity patterns in the mammalian brain. Results: Here, it is found based on empirical data that, despite this heterogeneity, the volume-specific cerebral glucose metabolic rate of many different brain structures scales with brain volume with almost the same exponent around -0.15. The exception is white matter, the metabolism of which seems to scale with a standard specific exponent -1/4. The scaling exponents for the total oxygen and glucose consumptions in the brain in relation to its volume are identical and equal to 0.86±0.030.86\pm 0.03, which is significantly larger than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on body mass. Conclusions: These findings show explicitly that in mammals (i) volume-specific scaling exponents of the cerebral energy expenditure in different brain parts are approximately constant (except brain stem structures), and (ii) the total cerebral metabolic exponent against brain volume is greater than the much-cited Kleiber's 3/4 exponent. The neurophysiological factors that might account for the regional uniformity of the exponents and for the excessive scaling of the total brain metabolism are discussed, along with the relationship between brain metabolic scaling and computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen

    Development of a measure of model fidelity for mental health Crisis Resolution Teams

    Get PDF
    Background Crisis Resolution Teams (CRTs) provide short-term intensive home treatment to people experiencing mental health crisis. Trial evidence suggests CRTs can be effective at reducing hospital admissions and increasing satisfaction with acute care. When scaled up to national level however, CRT implementation and outcomes have been variable. We aimed to develop and test a fidelity scale to assess adherence to a model of best practice for CRTs, based on best available evidence. Methods A concept mapping process was used to develop a CRT fidelity scale. Participants (n = 68) from a range of stakeholder groups prioritised and grouped statements (n = 72) about important components of the CRT model, generated from a literature review, national survey and qualitative interviews. These data were analysed using Ariadne software and the resultant cluster solution informed item selection for a CRT fidelity scale. Operational criteria and scoring anchor points were developed for each item. The CORE CRT fidelity scale was then piloted in 75 CRTs in the UK to assess the range of scores achieved and feasibility for use in a 1-day fidelity review process. Trained reviewers (n = 16) rated CRT service fidelity in a vignette exercise to test the scale’s inter-rater reliability. Results There were high levels of agreement within and between stakeholder groups regarding the most important components of the CRT model. A 39-item measure of CRT model fidelity was developed. Piloting indicated that the scale was feasible for use to assess CRT model fidelity and had good face validity. The wide range of item scores and total scores across CRT services in the pilot demonstrate the measure can distinguish lower and higher fidelity services. Moderately good inter-rater reliability was found, with an estimated correlation between individual ratings of 0.65 (95% CI: 0.54 to 0.76). Conclusions The CORE CRT Fidelity Scale has been developed through a rigorous and systematic process. Promising initial testing indicates its value in assessing adherence to a model of CRT best practice and to support service improvement monitoring and planning. Further research is required to establish its psychometric properties and international applicability
    • …
    corecore