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Abstract 
A direct reconstruction algorithm for complex conductivities in W2, ∞(Ω), where Ω is a bounded, simply 
connected Lipschitz domain in , is presented. The framework is based on the uniqueness proof by 
Francini (2000 Inverse Problems 6107–19), but equations relating the Dirichlet-to-Neumann to the 
scattering transform and the exponentially growing solutions are not present in that work, and are 
derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities 
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and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with 
discontinuities at the organ boundaries are included. 
 

1. Introduction 
The reconstruction of admittivies γ from electrical boundary measurements is known as the inverse 
admittivity problem. The unknown admittivity appears as a complex coefficient γ(z) = σ(z) + iω (z) in 
the generalized Laplace equation 
 

 

where u is the electric potential, σ is the conductivity of the medium,  is the permittivity, and ω is the 
temporal angular frequency of the applied electromagnetic wave. The data is the Dirichlet-to-
Neumann (DN), or voltage-to-current density map defined by 

 

where u ∈ H1(Ω) is the solution to (1). By the trace theorem . 
In this work we present a direct reconstruction algorithm for the admittivity γ. The majority of the 
theory is based on the 2000 paper by Francini20 in which it is established that if σ,   ∈ W2, ∞(Ω), where 
Ω is a bounded domain in  with Lipschitz boundary, then the real-valued functions σ and  are 
uniquely determined by the DN map, provided that the imaginary part of the admittivity is sufficiently 
small. The proof in20 is based on the D-bar method and is nearly constructive, but equations linking the 
scattering transform and the exponentially growing solutions to the DN data are not used in the proof, 
and so it does not contain a complete set of equations for reconstructing the admittivity. In this work, 
we derive the necessary equations for a direct, nonlinear reconstruction algorithm for the admittivity 
γ. Furthermore, we establish the existence of exponentially growing solutions to (1), which prove to be 
useful in relating the DN data to the scattering transform. The reconstruction formula in20 is for the 
potential Qγ, whose relationship to γ is described below. We provide a direct formula for γ from the D-
bar equations in,20 which is computationally advantageous as well. 
 
The inverse admittivity problem has an important application known as electrical impedance 
tomography (EIT). The fact that the electrical conductivity and permittivity vary in the different tissues 
and organs in the body allows one to form an image from the reconstructed admittivity distribution. In 
the 2D geometry, EIT is clinically useful for chest imaging. Conductivity images have been used for 
monitoring pulmonary perfusion,8,22,45 determining regional ventilation in the lungs,23,21,48 and the 
detection of pneumothorax,15,16 for example. In three dimensions, conductivity images have been 
used, for instance, in head imaging47,46 and knowledge of the admittivity has been applied to breast 
cancer detection.7,30,31 
 
Reconstruction algorithms based on a least-squares approach that reconstruct permittivity 
include.18,7,24,30 The aforementioned algorithms are iterative, whereas the work presented here is a 
direct method that makes use of exponentially growing solutions, or complex geometrical optics (CGO) 
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solutions, to the admittivity equation. The steps of the algorithm are to compute these CGOsolutions 
from knowledge of the DN map, to compute a scattering transform matrix, to solve two systems 

of  (D-bar) equations in the complex frequency variable k for the CGO solutions to a related elliptic 
system, and finally to reconstruct the admittivity from the values of these solutions at k = 0. In this 
work, we provide a complete implementation of this algorithm and present reconstructions of several 
numerical phantoms relevant to medical EIT imaging. The phantoms we consider here are 
discontinuous at the organ boundaries, which is actually outside the theory of the algorithm. The 
work25 contains computations of smooth admittivities and validates our formulas and computations by 
comparing the results of the intermediate functions (CGO solutions and scattering transforms) with 
those computed from knowledge of the admittivity. 
 
We briefly review the history of results using CGO solutions on the inverse conductivity problem in 
dimension 2. The inverse conductivity problem was first introduced by Calderón11 in 1980, where he 
proved that, in a linearized version of the problem, the DN map uniquely determines the conductivity, 
and he proposed a direct reconstruction method for this case. An implementation in dimension 2 for 
experimental data is found in.6 In 1996, Nachman42 presented a constructive proof of global 
uniqueness for twice differentiable conductivities using D-bar methods. The D-bar algorithm following 
from42,43 has been applied to simulated data in38,40,26,37 and to experimental data on tanks and in 
vivo human data in27,28,41,17 While the initial scattering transform was regularized using a Born 
approximation, a more recent paper39 contains a full nonlinear regularization analysis, including 
estimates on speed of convergence in Banach spaces, for twice differentiable conductivities. The 
regularity conditions on the conductivity were relaxed to once-differentiable in.9 The proof uses D-bar 
techniques and formulates the problem as a first-order elliptic system. A reconstruction method based 
on9 can be found in.32–34 Francini20 provided a proof of unique identifiability for the inverse admittivity 
problem for σ,   ∈ W2, ∞(Ω), with ω small. Her work provides a nearly constructive proof based on D-
bar methods on a first-order elliptic system similar to that in.9 A non-constructive proof that applies to 
complex admittivities with no smallness assumption is found in.10 Astala and Päivärinta provide a CGO-
based constructive proof for real conductivities σ ∈ L∞(Ω),1 and numerical results related to this work 
can be found in.3,4 
 
The paper is organized as follows. In section 2 we describe the direct reconstruction algorithm, which is 
comprised of boundary integral equations for the exponentially growing solutions to (1) involving the 
DN data, boundary integral equations relating those CGO solutions and the CGO solutions Ψ of the first 

order system, equations for the scattering transform involving only the traces of Ψ, the  equations 
established in,20 and the direct reconstruction formula for Qγ and thus γ. Derivations of the novel 
equations are found in this section. Section 3 describes the numerical implementation of the 
algorithm. Results on noisy and non-noisy simulated data of a cross-sectional chest with discontinuous 
organ boundaries are found in section 4. 

2. The direct reconstruction algorithm 
In this section we will provide the equations for the direct reconstruction algorithm, completing the 
steps for the proof in20 to be completely constructive. In particular, boundary integral equations 
relating the CGO solutions to the DN map are derived. 
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Let  be a bounded open domain with a Lipschitz boundary. Throughout we assume that there 
exist positive constants σ0 and β such that 
 

 

and 

 

We extend σ and  from Ω to all of  such that σ ≡ 1 and  ≡ 0 outside a ball with fixed radius that 
contains Ω, and (3) and (4) hold for all of . In fact, all that is required is that γ is constant outside 
that ball of fixed radius; for convenience we look at the case where γ ≡ 1. 
The proof in20 closely follows that of9 for conductivities σ ∈ W1, p(Ω), p > 2. The matrix potential Qγ is, 
however, defined slightly differently, and since the potential in20 is not Hermitian, the approach in20 is 
to consider the complex case as a perturbation from the real case provided the imaginary part of γ is 
small. Define Qγ(z) and a matrix operator D by 
 

 

Thus we define 

 

and equivalently we can write 

 

or 

 

Defining a vector 

 

in terms of the solution u to (1), one sees that 
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The uniqueness result in20 is 
 
Theorem 2.1 (Theorem 1.120). Let Ω be an open bounded domain in  with Lipschitz boundary. Let 

σj and j, for j = 1, 2 satisfy assumptions (3) and . There exists a 
constant ω0 = ω0(β, σ0, Ω) such that if γj= σj + iω j for j = 1, 2 and ω < ω0 and if 

 

then 
 

2.1. CGO solutions 
Francini shows in20 that for ω sufficiently small and γ satisfying (3) and (4) there exists a unique 2 × 2 
matrix M(z, k) for  satisfying 
 

 

that is a solution to 

 

where Dk is the matrix operator defined by 

 

and 'off' denotes the matrix consisting of only the off-diagonal entries of M. The system (11) is 
equivalent to the following set of equations, included for the reader's convenience 

 

Thus, there exists a unique matrix Ψ(z, k) defined by 

 

that is a solution to 

 

or equivalently 
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These CGO solutions Ψ(z, k) are key functions in the reconstructions, but the proof in20 does not 
provide a link from these functions to the DN data. A useful link can be established through 
exponentially growing solutions to the admittivity equation (1). For γ − 1 with compact support, 
equation (1) can be studied on all of , and introducing the complex parameter k, two distinct 
exponentially growing solutions, which differ in their asymptotics, exist. We will denote these solutions 

by u1 and u2 where  and  in a sense that is made precise in theorems 2.2 and 2.3, 
where the existence of such solutions is established. The proof will make use of the following lemma 
proved in the real case by Nachman;42 the complex version shown here also holds and was used in.20 

The lemma is also true if  is interchanged with ∂z. 

Lemma 2.1. Let 1 < s < 2 and  

(1)  If the complex function  then there exists a unique complex 

function  such that (∂z + ik)u = v. 

(2)  If the complex function  and ,  then there exists a 

unique complex function  such that (∂z + ik)u = v. 

(3)  If the complex function  and ,  then there exists a 

unique complex function  such that  

The following lemma will also be used in the proofs of theorems 2.2 and 2.3. 
 
Lemma 2.2. For ω sufficiently small and γ satisfying (3) and (4), the following identities hold: 

 

 

Proof. By the product rule, 
 

 

The second and third equalities utilized (6) and (12), respectively. 
 

We also have 

http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib20
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn01
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn01
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322proc4
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322proc5
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib42
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib20
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322proc4
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322proc5
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn03
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn04
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn06
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn12


 

This establishes (16). 
Similarly, using (6) and (12), 
 

 

We also have 

 

This establishes (17). 
 
Knudsen establishes the existence of exponentially growing solutions to the conductivity equation in 
the context of the inverse conductivity problem in.32 The proofs of their existence for the admittivity 
equation and the associated boundary integral equations are in the same spirit as.32 See also49 for the 
proof of theorem 2.2 and the boundary integral equation for u1. 
 
Theorem 2.2. Let γ(z) ∈ W1, p(Ω), with p > 2 such that σ and  satisfy (3) and (4), and let γ(z) − 1 have 

compact support in W1, p(Ω). Then for all  there exists a unique solution 

 

to the admittivity equation in  such that  2 < r < ∞. Moreover, the 
following equalities hold: 
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and 

 

for some constant C. 
 

Theorem 2.3. Let γ(z) satisfy the hypotheses of theorem 2.2. Then for all there exists a 
unique solution 

 

to the admittivity equation in  with  2 < r < ∞. Moreover, the following 
equalities hold: 

 

 

and 

 

for some constant C. 
We will prove theorem 2.2; the proof of theorem 2.3 is analogous. 
 
Proof. Assume u is a solution of the admittivity equation of the form (18), and 

let  be the corresponding solution to (D − Qγ)Ψ = 0. Define the complex 
function v via v(z, k) = γ(z)−1/2M11(z, k) − 1. We will first show that there exists a unique complex 

function , where r > 2 such that (∂z + ik)w = v, for  Let us rewrite v as 
follows: 
 

 

Let r > 2 and 1 < s < 2 with  We know by theorem 4.1 of20 that there exists a constant C > 

0 depending on β, σ0 and p such that  for every r > 2, and that 

γ(z)−1/2 − 1 has compact support in  It follows that , and by Minkowski's 
inequality 
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where Cr, γ depends on r and the bounds on σ and . 
 
From (8), 
 

 

 

We know that  with 1 ≤ α ≤ p since Q12(z) has compact support. It 

follows that  By the generalized Hölder's inequality and the 

fact that  is bounded with we 

have  and  where Kr, γ depends only on r and the bounds on σ 

and . Thus, by lemma 2.1 (2), there exists a unique solution  such that 
 

 

We have by (16), 
 

 

Taking  of both sides of (26) and using (27), 
 

 

Using the fact , it follows that 

 

 

Since  by lemma 2.1 (1), we must have 

 

We now define 
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then by (26) 
 

 

which proves (19), and by (30) 
 

 

which proves (20). 
 
The norm estimate given by (21) follows by Minkowski's inequality, the constant C depends on r, the 
bound on γ − 1, and the bounds on σ and . 
 
Remark. Note that from (19) 

 

and from (20) 
 

 

Thus, we can equivalently rewrite (19) and (20), respectively, as 
 

 

 

In a similar manner, we can rewrite (23) and (24), respectively, as 
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Useful boundary integral equations for the traces of u1 and u2 can be derived under the additional 
assumption that γ ∈ W2, p and u1, u2 ∈ W2, p, p > 1. The following proposition shows a relationship 
between the exponentially growing solutions ψS(z, k) (when they exist) to the Schrödinger equation 
 

 

and the CGO solutions u1 and u2 to (1). The solution ψS to (38), where qS is complex, is asymptotic to 
eikz in the sense that 
 

 

where  and 1 < p < 2. The question of the existence of a unique solution to (38) is 

addressed for real γ in,42 where it is shown to exist if and (roughly) only if  The solutions 
ψS will be used to derive the boundary integral equations for u1 and u2, but not in the direct 
reconstruction algorithm. 
 
Lemma 2.3. Let γ(z) = σ(z) + iω (z) ∈ W2, p(Ω), with p > 2 such that σ and satisfy (3) and (4), and let 
γ(z) − 1 have compact support in W1, p(Ω). Let u1 be the exponentially growing solution to the 
admittivity equation as given in theorem 2.2, and let ψS be the exponentially growing solution to the 
Schrödinger equation (38), when it exists. Then 
 

 

Proof. From (18), 
 

 

satisfies the admittivity equation with [γ1/2(z) − 1] + γ1/2(z)ikw1(z, k) ∈ W1, r(Ω) for r > 2. We also know 
that when it exists, 
 

 

is also a solution to the admittivity equation with  Hence, these 
exponentially growing solutions must be equal. 
 
Lemma 2.4. Let γ(z) = σ(z) + iω (z) ∈ W2, p(Ω), with p > 2 such that σ and satisfy (3) and (4), and let 
γ(z) − 1 have compact support in W1, p(Ω). Let u2 be the exponentially growing solution to the 
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admittivity equation as given in theorem 2.3, and let ψS be the exponentially growing solution to the 
Schrödinger equation (38), when it exists. Then 
 

 

Proof. From (22), 
 

 

 

satisfies the admittivity equation with 
for r > 2. From (40), 
 

 

satisfies the admittivity equation with  Thus, these exponentially growing 
solutions must be equal, and so 
 

 

Let us recall some terminology arising from42 before establishing boundary integral equations involving 
the exponentially growing solutions. Let Λσ be the DN map when Ω contains the conductivity 
distribution σ, and Λ1 is the DN map for a homogeneous conductivity equal to 1. The Faddeev Green 
function Gk(z) is defined by19 
 

 

where 

 

 

for . In the real-valued case γ = σ, the trace of the function ψS( , k) on ∂Ω satisfies the 
integral equation42 
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where . The equation (44) is a Fredholm equation of the second kind and uniquely 
solvable in H1/2(∂Ω) for any . 
 
The boundary integral equations for u1 and u2 are similar to (44). 
 
Theorem 2.4. Let γ ∈ W2, p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω. Suppose σ 
and  satisfy (3) and (4), and let γ(z) − 1 have compact support in W2, p(Ω). Then for any 

nonexceptional , the trace of the exponentially growing solution u1( , k) on ∂Ω is the 
unique solution to 
 

 

 

Proof. Let  where 1 < r < 2 and p > 2. Let {γn}n ∈ N⊂W2, r(Ω) be a sequence converging to 

γ ∈ W1, p(Ω). Then by the Sobolev embedding theorem,  Let ψn be the 
exponentially growing solutions to the Schrödinger equation with potential γ−1/2nΔγn1/2, and un be the 
CGO solutions defined by theorem 2.2 to the admittivity equation with admittivity γn. Then for 

each  the complex γ version of (44) holds for nonexceptional  
 

 

 
where γn = 1 in the neighborhood of ∂Ω. 
 
It follows by (39) that for each complex number k ≠ 0, and for each  
 

 

 
We claim that for each n, un satisfies (45). To see this, by (39), for z ∈ ∂Ω, 
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where we used the fact that γn = 1 in a neighborhood of ∂Ω. Thus, un satisfies (45) for each  
We know by theorem 3.1 of20 that M(z, k) depends continuously on γ. From (47), we can conclude that 
 

 

 
Thus, by (47), (48), and (49), we have that u1( , k)|∂Ω satisfies (45). The uniqueness of u1( 
, k)|∂Ω follows by theorem 2.2. 
 
An analogous theorem holds for u2. 
 
Theorem 2.5. Let γ ∈ W2, p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω. Suppose σ 
and  satisfy (3) and (4), and let γ(z) − 1 have compact support in W2, p(Ω). Then for any 

nonexceptional , the trace of the exponentially growing solution u2( , k) on ∂Ω is the 
unique solution to 
 

 

 
Proof. Let p, r, {γn}n ∈ N⊂W2, r(Ω), and ψn be as in the proof of theorem 2.4. Let un be the CGO 
solutions defined in theorem 2.3 to the admittivity equation with admittivity γn. Then for each 

, for nonexceptional , evaluating (46) at , 
 

 

 
where γn = 1 in a neighborhood of ∂Ω. 
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It follows by (41) that for each complex number k ≠ 0, and for each  
 

 

We claim that for each n, un satisfies (50). To see this, by (41), for z ∈ ∂Ω, 
 

 

using the change of variables  and the fact that γn = 1 in a neighborhood of ∂Ω. 
Thus, un satisfies (50) for each  
 
We know by theorem 3.1 of20 that M(z, k) depends continuously on γ. From (52), we can conclude that 
 

 

Thus, by (52), (53), and (54), we have that u2( , k)|∂Ω satisfies (50). The uniqueness of u2( 
, k)|∂Ω follows by theorem 2.3. 
 
2.2. The scattering transform matrix 
 

The scattering transform Sγ(k) of the matrix potential Qγ is defined in20 by 
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where . Thus we are only concerned with computing the off-diagonal 
entries of Sγ, which we will denote by S12(k) and S21(k). 
 
Boundary integral formulas for the off-diagonal entries of Sγ(k) in (55) can be computed by integration 
by parts as follows 
 

 

 

and similarly 

, 

 

where ν = ν1 + iν2 denotes the outward unit normal to the boundary ∂Ω. 
 
Theorem 2.6. The trace of the exponentially growing solutions Ψ12(z, k) and Ψ21(z, k) 

for  can be determined by 
 

 

 

 
where u1 and u2 are calculated via equations (45) and (50) respectively. 
 
Proof. We use the relations in (35) and (37) to obtain boundary integral equations for Ψ21 and 
Ψ12 for z ∈ ∂Ω from equations (45) and (50), respectively. Let us begin with Ψ12: 
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Similarly, 

 

A thorough study of the properties of the Faddeev Green function Gk and its derivatives is given in.44 
The calculations for the specific derivatives needed here are shown below. By the definition of Gk (42) 
 

 

 
Using the definition of gk (43), 
 

 

by the definition of the inverse Fourier transform and the well known result 
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Therefore, by (62) and (63) 
 

 

The  derivative for Ψ21 is calculated in a similar manner, 
 

 

 

Substituting the representations for  and , given in (64) and (65), back 
into the equations for Ψ12 and Ψ21, given in (60) and (61) respectively, proves the theorem. 
 
2.3. From S(k) to M 
 
The dependence of M on the complex parameter k is related to the scattering transform through the 

following  system. 
 
Theorem 2.7 (Theorem 4.121). Let σ and  satisfy (3) and (4) and let M be the unique solution to (11) 
satisfying (10). The map k → M( , k) is differentiable as a map into Lr

− β, and satisfies the equation 
 
 

 

 
Where 
 

 

Moreover, for every p > 2, 
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where K2 depends on β, σ0, Ω, and p. 
 
Note that equation (66) can be written as the following two systems of equations: 
 

 

and 

 

included for the reader's convenience. 

2.4. From M to γ 
 
Theorem 2.8 (Theorem 6.221). For any ρ > 0, 

 

This provides a reconstruction formula for the entries of Qγ, and one can recover γ 

from  or . However, this formula is computationally 

impractical as it requires a large k limit of integrals involving and ∂z derivatives of M(z, k). 
We have derived computationally advantageous formulas for recovering the entries of Qγ that only 
require knowledge of the CGO solutions at k = 0. Theorem 2.9 provides this direct relation between 

the CGO solutions M(z, 0) (from the equation (66)) and the matrix potential Qγ(z), eliminating the 
large k limit required in equation (70) above. 
 
Theorem 2.9. The entries of the potential matrix Qγ(z) defined in (5) can be calculated using only 
knowledge of the CGO solutions M(z, 0) via 
 

 

 

where, 
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Proof. We follow an idea similar to that in5 and define 
 

 

 

Note that M+ and M− are only dependent on the Qγ matrix, not −QT
γ as is required in.5 Therefore, 

 

 

so that 

 

One can then reconstruct the log  of the admittivity γ from either Q12 or Q21 by inverting the 

∂z or  operator respectively, and exponentiate to recover γ explicitly 
 

 

2.5. The steps of the algorithm 
 

We now have all the necessary steps for a direct reconstruction algorithm. 

(1)  Compute the exponentially growing solutions u1(z, k) and u2(z, k) to the admittivity equation from the 
boundary integral formulas (45) and (50) 

 

(2)  Compute the off diagonal entries of the CGO solution Ψ(z, k) for z ∈ ∂Ω from the boundary integral formulas 
(58) and (59) 
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(3)  Compute the off-diagonal entries of the scattering matrix Sγ(k) from (56) and (57) 

 

(4)  Solve the  equation (66) for the matrix M(z, k) 

 

(5)  Reconstruct Qγ from theorem 2.9 and use (77) to compute γ. 

3. Numerical implementation 
In this section, we describe the implementation of the algorithm. Greater detail of the numerical 
methods and validations of the computations for admittivity distributions with twice differentiable real 
and imaginary parts can be found in,25 where the solution to the forward problem (11) is computed 
and used to validate formulas (58) an (59), as well as computations of the scattering transform. In this 
work, we consider examples with discontinuities at the organ boundaries. 
 
3.1. Computation of the DN map 
 

An approximation to the DN map was computed by simulating voltage data by the finite element 
method (FEM), and then computing a matrix approximation to the map by computing the inner 
product of the applied currents with the voltages. This approximation to the DN map has been 
discussed, for example, in.27,17,39 It can be formed analogously in the complex case. 
Gaussian white noise was added independently to the real and imaginary parts of the simulated 
voltages for each current pattern by adding a random vector of amplitude η > 0 multiplied by the 
maximum voltage value for that current pattern and real or imaginary component to the computed 
voltages. We consider noise levels η = 0 and η = 0.0001, which corresponds to 0.01% noise, the 
published level of the ACT 3 system,18 which applies the trigonometric current patterns used in the 
simulations here. 
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3.2. Computation of the CGO solutions and Sγ(k) 
 

The CGO solutions on the boundary of Ω were computed for each k in a grid [ − K, K]2 in the complex 
plane. The choice of K, which serves as a cut-off frequency, was determined by the behavior of the 
scattering transforms S12 and S21. As in39 for the D-bar algorithm for conductivity reconstructions, the 
cutoff frequency K has a regularizing effect, and was chosen here empirically to balance smoothing and 
numerical error. We do not address the selection of K by more sophisticated means in this work. 
 
3.2.1. Computation of u1 and u2 
 
A boundary integral equation of the form (45) was solved in.17and39 In this work, as in,17 we employ an 
approximation to the Faddeev Green function Gkthat allows for very rapid computation 
of u1 and u2 from (45) and (50), respectively. Namely, Gk is approximated by the fundamental solution 
for the Laplacian 
 

 

Denoting the solutions to (45), (50) by u0
1 and u0

2, respectively, the convolution integrals 
 

 

were computed for z = zℓ, the center of the ℓth electrode, via Simpson's rule, and G0 was set to 0 when 

ζ = zℓ. Note that by the definition of G0, . 
 
3.2.2. Computation of Ψ12 and Ψ21 
 
The boundary integral formulas (58) and (59) for Ψ12 and Ψ21, respectively, require knowledge of [Λγ − 

Λ1]uj(ζ, k) for j = 1, 2, with ζ ∈ ∂Ω, and . These values are already computed during the 
evaluation of u1 and u2 via (45) and (50). Therefore, we merely recall those values and approximate the 

boundary integral using a finite sum. One should note that G0(z − ζ), , 

and  are all undefined for z = ζ. We removed these points in the computation by 
setting their values to zero. 
 
3.2.3. Computation of the scattering transform 
 

http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib39
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn45
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib17
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib39
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib17
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn45
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn50
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn45
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn50
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn58
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn59
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn45
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn50


The off-diagonal entries of the scattering transform matrix, namely S12(k) and S21(k), were computed 
inside the square [ − K, K]2 (with k = 0 not included since the formulas for the CGO solutions do not hold 
for k = 0). We compute S12(k) and S21(k) using a finite sum approximation to (56) and (57): 
 

 

where zl denotes the coordinate of the ℓth equally spaced electrode around ∂Ω (in this case the unit 
circle). 
 
3.3. Solution of the system of D-bar equations 

The two systems of  equations (68) and (69) can be written as the convolutions 
 

 

and 

 

A numerical solver for equations of the form 

 

was developed in35 for the inverse conductivity problem. The solver is based on the fast method by 
Vainikko36 that uses FFT for solving integral equations with weakly singular kernels. 
In this work, we must solve the systems of equations (78) and (79) rather than a single equation. 
Furthermore, the unknowns M(z, k) are not conjugated, but instead the argument k is conjugated. To 
address this, we interpolated the scattering data Sγ, computed above in section 3.2.3, to a new k-grid 
that includes the origin k = 0 at the center and has an odd number of grid points in both the horizonal 
and vertical directions. We solve the systems (78) and (79) on this new k-grid using appropriate flip 

operations to ensure that we access the correct entries in the matrix corresponding to . 
To perform the convolution we used Fourier transforms as follows: 
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and similarly 

 

where hκ is the step size of the uniform k-grid of size 129 × 129, and  denotes componentwise 
multiplication. We used GMRES to solve the resulting linear systems for each value of z in a grid of 128 
equally spaced points between [−1.1, 1.1] in both the x and y directions and computed M(z, k) for all 
|z| ≤ 1.1. The step size in z was hz ≈ 0.0173. 
 
3.4. Computation of the admittivity 
 

The admittivity is computed by solving first for Q21 from (72) (note that equivalently one could 
use Q12 from (71)), and then solving (77) for log (γ) in the Fourier domain using FFT. The 
functions M+ and M− in equations (73) and (74) were evaluated using the entries of M(z, 0) recovered 

when solving the equation (see section 3.3 above). We used centered finite differences (with a step 

size of hz ≈ 0.0173) to evaluate the  and ∂z derivatives of M+ and M−respectively. We then 
performed componentwise division to compute Q12 and Q21for |z| ≤ 1.1. Finally, the computed log (γ) 
was exponentiated to recover γ inside the unit disc. 

4. Numerical results 
We consider several test problems simulating a simplified cross-section of a human torso. In each 
example, the admittivity is given by γ = σ + i . That is, the imaginary component includes the temporal 
angular frequency ω. Since this is a known value, there is no loss of generality in representing γ this 
way in the simulations. The complete electrode model (CEM), originally described in,13 was 
implemented in the FEM in order to solve the forward problem. The CEM takes into account both the 
shunting effect of the electrodes and the contact impedances between the electrodes and tissue. In 
our computations, Ω was chosen to be a disc of radius 0.15 m, and the FEM computations were 
performed on a mesh with 4538 triangular elements and 32 equispaced electrodes 0.029 m ×0.024 m 
placed on the boundary. The effective contact impedance was chosen to be z = 0.0057 Ω m2 on all 
electrodes in our simulations. The current amplitude was chosen to be C = 2 mA, and the applied 
current patterns are the trigonometric patterns 
 

http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn72
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn71
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn77
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn73
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322eqn74
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322s3-3
http://iopscience.iop.org/article/10.1088/0266-5611/28/9/095005/meta#ip422322bib13


 

where , |eℓ| is the area of the ℓth electrode, Iℓ is the current on the ℓth electrode, 
and L denotes the total number of electrodes. As in,27,17 the currents were normalized to have ℓ2-norm 
of 1, and the voltages were normalized accordingly. Also, the DN map was scaled to represent data 
collected on the unit disc using the relation Λγ, 1 = rΛγ, r, where the second subscript represents the 
radius of the disc. 
 
Where indicated, we added 0.01% Gaussian relative noise to the simulated voltages as follows. Denote 
the (complex-valued) vector of computed voltage for the jth current pattern by Vj, let η = 0.0001 
denote the noise level, and N a Gaussian random vector (generated by the randn commmand in 

MATLAB) that is unique for each use of the notation N. Denoting the noisy data by  we then 

have  where 
 

 

We solve the boundary integral equations (45) and (50) for the traces of the CGO 

solutions u1 and u2 for k ∈ [ − K, K]2, with K varying for each test problem in this work. The 

solution M(z, k), to the  equation (66), is computed in parallel by the method described in 
section 3.3. The low-pass filtering by taking k ∈ [ − K, K]2results in smooth functions Mjp, j, p = 1, 2, 
which are differentiated by centered finite differences to recover Q21, as described in section 3.4. The 
admittivity γ was then computed by (77). 
 
Define the dynamic range of the conductivity, and likewise the permittivity, by 

 

where the maximum and minimum values are taken on the computational grid for the reconstruction 
and σ(K) denotes the reconstructed conductivity σ that was computed using a scattering transform 
computed on the truncated k grid. 
 
4.1. Example 1 
 

The first test problem is an idealized cross-section of a chest with a background admittivity of 1+0i. We 
do not include units or frequency in these examples, since our purpose is to demonstrate that the 
equations in this paper lead to a feasible reconstruction algorithm for complex admittivities. 
Reconstructions from more realistic admittivity distributions or experimental data are the topic of 
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future work. Figure 1 shows the values of the admittivity in the simulated heart and lungs. Noise-free 
reconstructions with the scattering transform computed on a 128 × 128 grid for k ∈ [ − 5.5, 5.5]2 are 
found in figure 2. The reconstruction has a maximum conductivity and permittivity value of 1.1452 + 
0.1802i, occurring in the heart region and a minimum of 0.8286 − 0.0247i, occurring in the lung region, 
resulting in a dynamic range of 79% for the conductivity and 60% for the permittivity when the 
negative permittivity value is set to 0. Although this decreases the dynamic range, we set the 
permittivity to 0 when it takes on a negative value in any pixel, since physically the permittivity cannot 
be less than 0. The reconstruction has the attributes of good spatial resolution and good uniformity in 
the reconstruction of the background and its value. 
 

 

  

Figure 1. The test problem in example 1. 
 

 

Figure 2. Reconstruction from noise-free data for example 1 with the real part of γ (conductivity) on the left, and 
the imaginary part (permittivity) on the right. The cut-off frequency was K = 5.5. The dynamic range is 79% for 
the conductivity, and 60% for the permittivity. 
 
4.2. Example 2 
This second example was chosen with conductivity values the same as in example 1, but with 
permittivity values in which the 'lungs' match the permittivity of the background. This is motivated by 
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the fact that at some frequencies, physiological features may match that of the surrounding tissue in 
the conductivity or permittivity component. This example, purely for illustration, mimics that 
phenomenon. The admittivity values can be found in figure 3. Noise-free reconstructions with the 
scattering transform computed on a 128 × 128 grid for k∈ [ − 5.5, 5.5]2 are found in figure 4. The 
maximum value of the conductivity and permittivity occur in the heart region, 1.1429 + 0.1828i, and 
the minimum value of the conductivity and permittivity is 0.8271 − 0.0204i. In this example, the 
dynamic range is 79% for the conductivity and 61% for the permittivity when the negative permittivity 
value is set to 0. Again the spatial resolution is quite good, and the background is quite homogeneous, 
although some small artifacts are present in both the real and imaginary parts. 
 

 

Figure 3. The test problem in example 2. Notice that in this case, the permittivity of the lungs matches the 
permittivity of the background, and so only the heart should be visible in the imaginary component of the 
reconstruction. 
 
4.3. Example 3 
Example 3 is an admittivity distribution of slightly higher contrast, and a non-unitary background 
admittivity of γ0 = 0.8 + 0.3i. See figure 5 for a plot of the phantom with admittivity values for the 
regions. Due to the non-unitary background, the problem was scaled, as was done, for example, in,17,27 
by defining a scaled admittivity  to have a unitary value in the neighborhood of the 

boundary and scaling the DN map by defining , solving the scaled problem, and rescaling 
the reconstructed admittivity. The scattering data for the noise-free reconstruction was computed on a 
128 × 128 grid for k ∈ [ − 5.2, 5.2]. Noisy data were computed as described in the beginning of this 
section, and the scattering data were also computed on a 128 × 128 grid for |k| ≤ 5.5. The 
reconstructions are found in figure 6. The maximum and minimum values are given in table 1. In this 
example, for the noise-free reconstruction, the dynamic range is 71% for the conductivity and 75% for 
the permittivity. Again, the spatial resolution is quite good. There is some degradation in the image and 
the reconstructed values in the presence of noise. We chose this noise level to be comparable to that 
of the 32 electrode ACT3 system at RPI.14 A thorough study of the effects of noise and stability of the 
algorithm with respect to perturbations in the data is beyond the scope of this paper. The scattering 
transform began to blow up for noisy data, requiring a truncation of the admissible scattering data to a 
circle of radius 5.5, resulting in a dynamic range of 62% for the conductivity and 68% for the 
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permittivity. A thorough study of the effects of the choice of K and its method of selection is not 
included in this paper. 
 

 

Figure 4. Reconstruction from noise-free data for example 2 with the real part of γ (conductivity) on the left, and 
the imaginary part (permittivity) on the right. The cut-off frequency was K = 5.5. The dynamic range is 79% for 
the conductivity, and 61% for the permittivity. 
 

 

Figure 5. The test problem in example 3. In this case, the background admittivity is 0.8 + 0.3i, rather than 1 + 0i 
as in examples 1 and 2. 
 



 

Figure 6. Top row: reconstruction from noise-free data for example 3. The cut-off frequency was K = 5.2. The 
dynamic range is 71% for the conductivity, and 75% for the permittivity. Bottom row: reconstruction from data 
with 0.01% added noise. The cut-off frequency was |k| ≤ 5.5. The dynamic range is 62% for the conductivity, and 
68% for the permittivity. 
 
Table 1. Maximum and minimum values in example 3 with the non-unitary background were found in the 
appropriate organ region. The table indicates these values of the admittivity in the appropriate region. 

  
Admittivity of test 
problem 

Reconstruction from noise-free 
data 

Reconstruction from noisy 
data 

Heart 1.2 + 0.6i 1.0246 + 0.5014i (max) 0.9740 + 0.4679i (max) 

Lungs 0.5 + 0.1i 0.5262 + 0.1258i (min) 0.5390 + 0.1281i (min) 

5. Conclusions 
A new direct method is presented for the reconstruction of a complex conductivity. This method has 
the attributes of being fully nonlinear, parallelizable, and the direct reconstruction does not require a 



high-frequency limit. It was demonstrated on numerically simulated data representing a cross-section 
of a human chest with discontinuous organ boundaries that the method yields reconstructions with 
good spatial resolution and dynamic range on non-noisy and noisy data. This was the first 
implementation of such a method, and although efforts were made to realistically simulate 
experimental data by including discontinuous organ boundaries, data on a finite number of electrodes, 
and simulated contact impedance, actual experimental data will surely prove more challenging. While 
this study with simulated data gives very promising results, more advanced studies of stability and 
robustness may be necessary to deal with the more difficult problem of reconstructions from 
experimental data. 
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	Abstract
	A direct reconstruction algorithm for complex conductivities in W2, ∞(Ω), where Ω is a bounded, simply connected Lipschitz domain in /, is presented. The framework is based on the uniqueness proof by Francini (2000 Inverse Problems 6107–19), but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.
	1. Introduction
	The reconstruction of admittivies γ from electrical boundary measurements is known as the inverse admittivity problem. The unknown admittivity appears as a complex coefficient γ(z) = σ(z) + iω/(z) in the generalized Laplace equation
	/
	where u is the electric potential, σ is the conductivity of the medium, / is the permittivity, and ω is the temporal angular frequency of the applied electromagnetic wave. The data is the Dirichlet-to-Neumann (DN), or voltage-to-current density map defined by
	/
	where u ∈ H1(Ω) is the solution to (1). By the trace theorem /.
	In this work we present a direct reconstruction algorithm for the admittivity γ. The majority of the theory is based on the 2000 paper by Francini20 in which it is established that if σ, / ∈ W2, ∞(Ω), where Ω is a bounded domain in / with Lipschitz boundary, then the real-valued functions σ and / are uniquely determined by the DN map, provided that the imaginary part of the admittivity is sufficiently small. The proof in20 is based on the D-bar method and is nearly constructive, but equations linking the scattering transform and the exponentially growing solutions to the DN data are not used in the proof, and so it does not contain a complete set of equations for reconstructing the admittivity. In this work, we derive the necessary equations for a direct, nonlinear reconstruction algorithm for the admittivity γ. Furthermore, we establish the existence of exponentially growing solutions to (1), which prove to be useful in relating the DN data to the scattering transform. The reconstruction formula in20 is for the potential Qγ, whose relationship to γ is described below. We provide a direct formula for γ from the D-bar equations in,20 which is computationally advantageous as well.
	The inverse admittivity problem has an important application known as electrical impedance tomography (EIT). The fact that the electrical conductivity and permittivity vary in the different tissues and organs in the body allows one to form an image from the reconstructed admittivity distribution. In the 2D geometry, EIT is clinically useful for chest imaging. Conductivity images have been used for monitoring pulmonary perfusion,8,22,45 determining regional ventilation in the lungs,23,21,48 and the detection of pneumothorax,15,16 for example. In three dimensions, conductivity images have been used, for instance, in head imaging47,46 and knowledge of the admittivity has been applied to breast cancer detection.7,30,31
	Reconstruction algorithms based on a least-squares approach that reconstruct permittivity include.18,7,24,30 The aforementioned algorithms are iterative, whereas the work presented here is a direct method that makes use of exponentially growing solutions, or complex geometrical optics (CGO) solutions, to the admittivity equation. The steps of the algorithm are to compute these CGOsolutions from knowledge of the DN map, to compute a scattering transform matrix, to solve two systems of / (D-bar) equations in the complex frequency variable k for the CGO solutions to a related elliptic system, and finally to reconstruct the admittivity from the values of these solutions at k = 0. In this work, we provide a complete implementation of this algorithm and present reconstructions of several numerical phantoms relevant to medical EIT imaging. The phantoms we consider here are discontinuous at the organ boundaries, which is actually outside the theory of the algorithm. The work25 contains computations of smooth admittivities and validates our formulas and computations by comparing the results of the intermediate functions (CGO solutions and scattering transforms) with those computed from knowledge of the admittivity.
	We briefly review the history of results using CGO solutions on the inverse conductivity problem in dimension 2. The inverse conductivity problem was first introduced by Calderón11 in 1980, where he proved that, in a linearized version of the problem, the DN map uniquely determines the conductivity, and he proposed a direct reconstruction method for this case. An implementation in dimension 2 for experimental data is found in.6 In 1996, Nachman42 presented a constructive proof of global uniqueness for twice differentiable conductivities using D-bar methods. The D-bar algorithm following from42,43 has been applied to simulated data in38,40,26,37 and to experimental data on tanks and in vivo human data in27,28,41,17 While the initial scattering transform was regularized using a Born approximation, a more recent paper39 contains a full nonlinear regularization analysis, including estimates on speed of convergence in Banach spaces, for twice differentiable conductivities. The regularity conditions on the conductivity were relaxed to once-differentiable in.9 The proof uses D-bar techniques and formulates the problem as a first-order elliptic system. A reconstruction method based on9 can be found in.32–34 Francini20 provided a proof of unique identifiability for the inverse admittivity problem for σ, / ∈ W2, ∞(Ω), with ω small. Her work provides a nearly constructive proof based on D-bar methods on a first-order elliptic system similar to that in.9 A non-constructive proof that applies to complex admittivities with no smallness assumption is found in.10 Astala and Päivärinta provide a CGO-based constructive proof for real conductivities σ ∈ L∞(Ω),1 and numerical results related to this work can be found in.3,4
	The paper is organized as follows. In section 2 we describe the direct reconstruction algorithm, which is comprised of boundary integral equations for the exponentially growing solutions to (1) involving the DN data, boundary integral equations relating those CGO solutions and the CGO solutions Ψ of the first order system, equations for the scattering transform involving only the traces of Ψ, the / equations established in,20 and the direct reconstruction formula for Qγ and thus γ. Derivations of the novel equations are found in this section. Section 3 describes the numerical implementation of the algorithm. Results on noisy and non-noisy simulated data of a cross-sectional chest with discontinuous organ boundaries are found in section 4.
	2. The direct reconstruction algorithm
	2.1. CGO solutions
	2.2. The scattering transform matrix
	2.3. From S(k) to M
	2.4. From M to γ
	2.5. The steps of the algorithm


	In this section we will provide the equations for the direct reconstruction algorithm, completing the steps for the proof in20 to be completely constructive. In particular, boundary integral equations relating the CGO solutions to the DN map are derived.
	Let / be a bounded open domain with a Lipschitz boundary. Throughout we assume that there exist positive constants σ0 and β such that
	/
	and
	/
	We extend σ and / from Ω to all of / such that σ ≡ 1 and / ≡ 0 outside a ball with fixed radius that contains Ω, and (3) and (4) hold for all of /. In fact, all that is required is that γ is constant outside that ball of fixed radius; for convenience we look at the case where γ ≡ 1.
	The proof in20 closely follows that of9 for conductivities σ ∈ W1, p(Ω), p > 2. The matrix potential Qγ is, however, defined slightly differently, and since the potential in20 is not Hermitian, the approach in20 is to consider the complex case as a perturbation from the real case provided the imaginary part of γ is small. Define Qγ(z) and a matrix operator D by
	/
	Thus we define
	/
	and equivalently we can write
	/
	or
	/
	Defining a vector
	/
	in terms of the solution u to (1), one sees that
	/
	The uniqueness result in20 is
	Theorem 2.1 (Theorem 1.120). Let Ω be an open bounded domain in / with Lipschitz boundary. Let σj and /j, for j = 1, 2 satisfy assumptions (3) and /. There exists a constant ω0 = ω0(β, σ0, Ω) such that if γj= σj + iω/j for j = 1, 2 and ω < ω0 and if
	/
	/
	Francini shows in20 that for ω sufficiently small and γ satisfying (3) and (4) there exists a unique 2 × 2 matrix M(z, k) for / satisfying
	/
	that is a solution to
	/
	where Dk is the matrix operator defined by
	/
	and 'off' denotes the matrix consisting of only the off-diagonal entries of M. The system (11) is equivalent to the following set of equations, included for the reader's convenience
	/
	Thus, there exists a unique matrix Ψ(z, k) defined by
	/
	that is a solution to
	/
	or equivalently
	/
	These CGO solutions Ψ(z, k) are key functions in the reconstructions, but the proof in20 does not provide a link from these functions to the DN data. A useful link can be established through exponentially growing solutions to the admittivity equation (1). For γ − 1 with compact support, equation (1) can be studied on all of /, and introducing the complex parameter k, two distinct exponentially growing solutions, which differ in their asymptotics, exist. We will denote these solutions by u1 and u2 where / and / in a sense that is made precise in theorems 2.2 and 2.3, where the existence of such solutions is established. The proof will make use of the following lemma proved in the real case by Nachman;42 the complex version shown here also holds and was used in.20 The lemma is also true if / is interchanged with ∂z.
	Lemma 2.1. Let 1 < s < 2 and /
	(1)  If the complex function / then there exists a unique complex function / such that (∂z + ik)u = v.
	(2)  If the complex function / and /, / then there exists a unique complex function / such that (∂z + ik)u = v.
	(3)  If the complex function / and /, / then there exists a unique complex function / such that /
	The following lemma will also be used in the proofs of theorems 2.2 and 2.3.
	Lemma 2.2. For ω sufficiently small and γ satisfying (3) and (4), the following identities hold:
	/
	/
	Proof. By the product rule,
	/
	The second and third equalities utilized (6) and (12), respectively.
	We also have
	/
	This establishes (16).
	Similarly, using (6) and (12),
	/
	We also have
	/
	This establishes (17).
	Knudsen establishes the existence of exponentially growing solutions to the conductivity equation in the context of the inverse conductivity problem in.32 The proofs of their existence for the admittivity equation and the associated boundary integral equations are in the same spirit as.32 See also49 for the proof of theorem 2.2 and the boundary integral equation for u1.
	Theorem 2.2. Let γ(z) ∈ W1, p(Ω), with p > 2 such that σ and / satisfy (3) and (4), and let γ(z) − 1 have compact support in W1, p(Ω). Then for all / there exists a unique solution
	/
	to the admittivity equation in / such that / 2 < r < ∞. Moreover, the following equalities hold:
	/
	/
	/
	Theorem 2.3. Let γ(z) satisfy the hypotheses of theorem 2.2. Then for all /there exists a unique solution
	/
	to the admittivity equation in / with / 2 < r < ∞. Moreover, the following equalities hold:
	/
	/
	/
	We will prove theorem 2.2; the proof of theorem 2.3 is analogous.
	Proof. Assume u is a solution of the admittivity equation of the form (18), and let / be the corresponding solution to (D − Qγ)Ψ = 0. Define the complex function v via v(z, k) = γ(z)−1/2M11(z, k) − 1. We will first show that there exists a unique complex function /, where r > 2 such that (∂z + ik)w = v, for / Let us rewrite v as follows:
	/
	Let r > 2 and 1 < s < 2 with / We know by theorem 4.1 of20 that there exists a constant C > 0 depending on β, σ0 and p such that / for every r > 2, and that γ(z)−1/2 − 1 has compact support in / It follows that /, and by Minkowski's inequality
	/
	where Cr, γ depends on r and the bounds on σ and /.
	From (8),
	/
	We know that / with 1 ≤ α ≤ p since Q12(z) has compact support. It follows that / By the generalized Hölder's inequality and the fact that / is bounded with /we have / and / where Kr, γ depends only on r and the bounds on σ and /. Thus, by lemma 2.1 (2), there exists a unique solution / such that
	/
	We have by (16),
	/
	Taking / of both sides of (26) and using (27),
	/
	Using the fact /, it follows that
	/
	Since / by lemma 2.1 (1), we must have
	/
	We now define
	/
	then by (26)
	/
	which proves (19), and by (30)
	/
	which proves (20).
	The norm estimate given by (21) follows by Minkowski's inequality, the constant C depends on r, the bound on γ − 1, and the bounds on σ and /.
	Remark. Note that from (19)
	/
	and from (20)
	/
	Thus, we can equivalently rewrite (19) and (20), respectively, as
	/
	/
	In a similar manner, we can rewrite (23) and (24), respectively, as
	/
	/
	Useful boundary integral equations for the traces of u1 and u2 can be derived under the additional assumption that γ ∈ W2, p and u1, u2 ∈ W2, p, p > 1. The following proposition shows a relationship between the exponentially growing solutions ψS(z, k) (when they exist) to the Schrödinger equation
	/
	and the CGO solutions u1 and u2 to (1). The solution ψS to (38), where qS is complex, is asymptotic to eikz in the sense that
	/
	where / and 1 < p < 2. The question of the existence of a unique solution to (38) is addressed for real γ in,42 where it is shown to exist if and (roughly) only if / The solutions ψS will be used to derive the boundary integral equations for u1 and u2, but not in the direct reconstruction algorithm.
	Lemma 2.3. Let γ(z) = σ(z) + iω/(z) ∈ W2, p(Ω), with p > 2 such that σ and /satisfy (3) and (4), and let γ(z) − 1 have compact support in W1, p(Ω). Let u1 be the exponentially growing solution to the admittivity equation as given in theorem 2.2, and let ψS be the exponentially growing solution to the Schrödinger equation (38), when it exists. Then
	/
	Proof. From (18),
	/
	satisfies the admittivity equation with [γ1/2(z) − 1] + γ1/2(z)ikw1(z, k) ∈ W1, r(Ω) for r > 2. We also know that when it exists,
	/
	is also a solution to the admittivity equation with / Hence, these exponentially growing solutions must be equal.
	Lemma 2.4. Let γ(z) = σ(z) + iω/(z) ∈ W2, p(Ω), with p > 2 such that σ and /satisfy (3) and (4), and let γ(z) − 1 have compact support in W1, p(Ω). Let u2 be the exponentially growing solution to the admittivity equation as given in theorem 2.3, and let ψS be the exponentially growing solution to the Schrödinger equation (38), when it exists. Then
	/
	Proof. From (22),
	/
	satisfies the admittivity equation with /for r > 2. From (40),
	/
	satisfies the admittivity equation with / Thus, these exponentially growing solutions must be equal, and so
	/
	Let us recall some terminology arising from42 before establishing boundary integral equations involving the exponentially growing solutions. Let Λσ be the DN map when Ω contains the conductivity distribution σ, and Λ1 is the DN map for a homogeneous conductivity equal to 1. The Faddeev Green function Gk(z) is defined by19
	/
	where
	/
	for /. In the real-valued case γ = σ, the trace of the function ψS( /, k) on ∂Ω satisfies the integral equation42
	/
	where /. The equation (44) is a Fredholm equation of the second kind and uniquely solvable in H1/2(∂Ω) for any /.
	The boundary integral equations for u1 and u2 are similar to (44).
	Theorem 2.4. Let γ ∈ W2, p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω. Suppose σ and / satisfy (3) and (4), and let γ(z) − 1 have compact support in W2, p(Ω). Then for any nonexceptional /, the trace of the exponentially growing solution u1( /, k) on ∂Ω is the unique solution to
	/
	Proof. Let / where 1 < r < 2 and p > 2. Let {γn}n ∈ N⊂W2, r(Ω) be a sequence converging to γ ∈ W1, p(Ω). Then by the Sobolev embedding theorem, / Let ψn be the exponentially growing solutions to the Schrödinger equation with potential γ−1/2nΔγn1/2, and un be the CGO solutions defined by theorem 2.2 to the admittivity equation with admittivity γn. Then for each / the complex γ version of (44) holds for nonexceptional /
	/
	where γn = 1 in the neighborhood of ∂Ω.
	It follows by (39) that for each complex number k ≠ 0, and for each /
	/
	We claim that for each n, un satisfies (45). To see this, by (39), for z ∈ ∂Ω,
	/
	where we used the fact that γn = 1 in a neighborhood of ∂Ω. Thus, un satisfies (45) for each /
	We know by theorem 3.1 of20 that M(z, k) depends continuously on γ. From (47), we can conclude that
	/
	Thus, by (47), (48), and (49), we have that u1( /, k)|∂Ω satisfies (45). The uniqueness of u1( /, k)|∂Ω follows by theorem 2.2.
	An analogous theorem holds for u2.
	Theorem 2.5. Let γ ∈ W2, p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω. Suppose σ and / satisfy (3) and (4), and let γ(z) − 1 have compact support in W2, p(Ω). Then for any nonexceptional /, the trace of the exponentially growing solution u2( /, k) on ∂Ω is the unique solution to
	/
	Proof. Let p, r, {γn}n ∈ N⊂W2, r(Ω), and ψn be as in the proof of theorem 2.4. Let un be the CGO solutions defined in theorem 2.3 to the admittivity equation with admittivity γn. Then for each /, for nonexceptional /, evaluating (46) at /,
	/
	where γn = 1 in a neighborhood of ∂Ω.
	It follows by (41) that for each complex number k ≠ 0, and for each /
	/
	We claim that for each n, un satisfies (50). To see this, by (41), for z ∈ ∂Ω,
	/
	using the change of variables / and the fact that γn = 1 in a neighborhood of ∂Ω. Thus, un satisfies (50) for each /
	We know by theorem 3.1 of20 that M(z, k) depends continuously on γ. From (52), we can conclude that
	/
	Thus, by (52), (53), and (54), we have that u2( /, k)|∂Ω satisfies (50). The uniqueness of u2( /, k)|∂Ω follows by theorem 2.3.
	The scattering transform Sγ(k) of the matrix potential Qγ is defined in20 by
	/
	where /. Thus we are only concerned with computing the off-diagonal entries of Sγ, which we will denote by S12(k) and S21(k).
	Boundary integral formulas for the off-diagonal entries of Sγ(k) in (55) can be computed by integration by parts as follows
	/
	and similarly
	,
	/
	where ν = ν1 + iν2 denotes the outward unit normal to the boundary ∂Ω.
	Theorem 2.6. The trace of the exponentially growing solutions Ψ12(z, k) and Ψ21(z, k) for / can be determined by
	/
	/
	where u1 and u2 are calculated via equations (45) and (50) respectively.
	Proof. We use the relations in (35) and (37) to obtain boundary integral equations for Ψ21 and Ψ12 for z ∈ ∂Ω from equations (45) and (50), respectively. Let us begin with Ψ12:
	/
	Similarly,
	/
	A thorough study of the properties of the Faddeev Green function Gk and its derivatives is given in.44 The calculations for the specific derivatives needed here are shown below. By the definition of Gk (42)
	/
	Using the definition of gk (43),
	/
	by the definition of the inverse Fourier transform and the well known result
	/
	Therefore, by (62) and (63)
	/
	The / derivative for Ψ21 is calculated in a similar manner,
	/
	Substituting the representations for / and /, given in (64) and (65), back into the equations for Ψ12 and Ψ21, given in (60) and (61) respectively, proves the theorem.
	The dependence of M on the complex parameter k is related to the scattering transform through the following / system.
	Theorem 2.7 (Theorem 4.121). Let σ and / satisfy (3) and (4) and let M be the unique solution to (11) satisfying (10). The map k → M( /, k) is differentiable as a map into Lr− β, and satisfies the equation
	/
	/
	Moreover, for every p > 2,
	/
	where K2 depends on β, σ0, Ω, and p.
	Note that equation (66) can be written as the following two systems of equations:
	/
	and
	/
	included for the reader's convenience.
	Theorem 2.8 (Theorem 6.221). For any ρ > 0,
	/
	This provides a reconstruction formula for the entries of Qγ, and one can recover γ from / or /. However, this formula is computationally impractical as it requires a large k limit of integrals involving /and ∂z derivatives of M(z, k).
	We have derived computationally advantageous formulas for recovering the entries of Qγ that only require knowledge of the CGO solutions at k = 0. Theorem 2.9 provides this direct relation between the CGO solutions M(z, 0) (from the /equation (66)) and the matrix potential Qγ(z), eliminating the large k limit required in equation (70) above.
	Theorem 2.9. The entries of the potential matrix Qγ(z) defined in (5) can be calculated using only knowledge of the CGO solutions M(z, 0) via
	/
	/
	/
	/
	Proof. We follow an idea similar to that in5 and define
	/
	/
	Note that M+ and M− are only dependent on the Qγ matrix, not −QTγ as is required in.5 Therefore,
	/
	so that
	/
	One can then reconstruct the log  of the admittivity γ from either Q12 or Q21 by inverting the ∂z or / operator respectively, and exponentiate to recover γ explicitly
	/
	We now have all the necessary steps for a direct reconstruction algorithm.
	(1)  Compute the exponentially growing solutions u1(z, k) and u2(z, k) to the admittivity equation from the boundary integral formulas (45) and (50)
	/
	(2)  Compute the off diagonal entries of the CGO solution Ψ(z, k) for z ∈ ∂Ω from the boundary integral formulas (58) and (59)
	/
	(3)  Compute the off-diagonal entries of the scattering matrix Sγ(k) from (56) and (57)
	/
	(4)  Solve the / equation (66) for the matrix M(z, k)
	/
	(5)  Reconstruct Qγ from theorem 2.9 and use (77) to compute γ.
	3. Numerical implementation
	3.1. Computation of the DN map
	3.2. Computation of the CGO solutions and Sγ(k)
	3.2.1. Computation of u1 and u2
	3.2.2. Computation of Ψ12 and Ψ21
	3.2.3. Computation of the scattering transform

	3.3. Solution of the system of D-bar equations
	3.4. Computation of the admittivity

	In this section, we describe the implementation of the algorithm. Greater detail of the numerical methods and validations of the computations for admittivity distributions with twice differentiable real and imaginary parts can be found in,25 where the solution to the forward problem (11) is computed and used to validate formulas (58) an (59), as well as computations of the scattering transform. In this work, we consider examples with discontinuities at the organ boundaries.
	An approximation to the DN map was computed by simulating voltage data by the finite element method (FEM), and then computing a matrix approximation to the map by computing the inner product of the applied currents with the voltages. This approximation to the DN map has been discussed, for example, in.27,17,39 It can be formed analogously in the complex case.
	Gaussian white noise was added independently to the real and imaginary parts of the simulated voltages for each current pattern by adding a random vector of amplitude η > 0 multiplied by the maximum voltage value for that current pattern and real or imaginary component to the computed voltages. We consider noise levels η = 0 and η = 0.0001, which corresponds to 0.01% noise, the published level of the ACT 3 system,18 which applies the trigonometric current patterns used in the simulations here.
	The CGO solutions on the boundary of Ω were computed for each k in a grid [ − K, K]2 in the complex plane. The choice of K, which serves as a cut-off frequency, was determined by the behavior of the scattering transforms S12 and S21. As in39 for the D-bar algorithm for conductivity reconstructions, the cutoff frequency K has a regularizing effect, and was chosen here empirically to balance smoothing and numerical error. We do not address the selection of K by more sophisticated means in this work.
	A boundary integral equation of the form (45) was solved in.17and39 In this work, as in,17 we employ an approximation to the Faddeev Green function Gkthat allows for very rapid computation of u1 and u2 from (45) and (50), respectively. Namely, Gk is approximated by the fundamental solution for the Laplacian
	/
	Denoting the solutions to (45), (50) by u01 and u02, respectively, the convolution integrals
	/
	were computed for z = zℓ, the center of the ℓth electrode, via Simpson's rule, and G0 was set to 0 when ζ = zℓ. Note that by the definition of G0, /.
	The boundary integral formulas (58) and (59) for Ψ12 and Ψ21, respectively, require knowledge of [Λγ − Λ1]uj(ζ, k) for j = 1, 2, with ζ ∈ ∂Ω, and /. These values are already computed during the evaluation of u1 and u2 via (45) and (50). Therefore, we merely recall those values and approximate the boundary integral using a finite sum. One should note that G0(z − ζ), /, and / are all undefined for z = ζ. We removed these points in the computation by setting their values to zero.
	The off-diagonal entries of the scattering transform matrix, namely S12(k) and S21(k), were computed inside the square [ − K, K]2 (with k = 0 not included since the formulas for the CGO solutions do not hold for k = 0). We compute S12(k) and S21(k) using a finite sum approximation to (56) and (57):
	/
	where zl denotes the coordinate of the ℓth equally spaced electrode around ∂Ω (in this case the unit circle).
	The two systems of / equations (68) and (69) can be written as the convolutions
	/
	and
	/
	A numerical solver for equations of the form
	/
	was developed in35 for the inverse conductivity problem. The solver is based on the fast method by Vainikko36 that uses FFT for solving integral equations with weakly singular kernels.
	In this work, we must solve the systems of equations (78) and (79) rather than a single equation. Furthermore, the unknowns M(z, k) are not conjugated, but instead the argument k is conjugated. To address this, we interpolated the scattering data Sγ, computed above in section 3.2.3, to a new k-grid that includes the origin k = 0 at the center and has an odd number of grid points in both the horizonal and vertical directions. We solve the systems (78) and (79) on this new k-grid using appropriate flip operations to ensure that we access the correct entries in the matrix corresponding to /.
	To perform the convolution we used Fourier transforms as follows:
	/
	and similarly
	/
	where hκ is the step size of the uniform k-grid of size 129 × 129, and / denotes componentwise multiplication. We used GMRES to solve the resulting linear systems for each value of z in a grid of 128 equally spaced points between [−1.1, 1.1] in both the x and y directions and computed M(z, k) for all |z| ≤ 1.1. The step size in z was hz ≈ 0.0173.
	The admittivity is computed by solving first for Q21 from (72) (note that equivalently one could use Q12 from (71)), and then solving (77) for log (γ) in the Fourier domain using FFT. The functions M+ and M− in equations (73) and (74) were evaluated using the entries of M(z, 0) recovered when solving the /equation (see section 3.3 above). We used centered finite differences (with a step size of hz ≈ 0.0173) to evaluate the / and ∂z derivatives of M+ and M−respectively. We then performed componentwise division to compute Q12 and Q21for |z| ≤ 1.1. Finally, the computed log (γ) was exponentiated to recover γ inside the unit disc.
	4. Numerical results
	4.1. Example 1
	4.2. Example 2
	4.3. Example 3

	We consider several test problems simulating a simplified cross-section of a human torso. In each example, the admittivity is given by γ = σ + i/. That is, the imaginary component includes the temporal angular frequency ω. Since this is a known value, there is no loss of generality in representing γ this way in the simulations. The complete electrode model (CEM), originally described in,13 was implemented in the FEM in order to solve the forward problem. The CEM takes into account both the shunting effect of the electrodes and the contact impedances between the electrodes and tissue. In our computations, Ω was chosen to be a disc of radius 0.15 m, and the FEM computations were performed on a mesh with 4538 triangular elements and 32 equispaced electrodes 0.029 m ×0.024 m placed on the boundary. The effective contact impedance was chosen to be z = 0.0057 Ω m2 on all electrodes in our simulations. The current amplitude was chosen to be C = 2 mA, and the applied current patterns are the trigonometric patterns
	/
	where /, |eℓ| is the area of the ℓth electrode, Iℓ is the current on the ℓth electrode, and L denotes the total number of electrodes. As in,27,17 the currents were normalized to have ℓ2-norm of 1, and the voltages were normalized accordingly. Also, the DN map was scaled to represent data collected on the unit disc using the relation Λγ, 1 = rΛγ, r, where the second subscript represents the radius of the disc.
	Where indicated, we added 0.01% Gaussian relative noise to the simulated voltages as follows. Denote the (complex-valued) vector of computed voltage for the jth current pattern by Vj, let η = 0.0001 denote the noise level, and N a Gaussian random vector (generated by the randn commmand in MATLAB) that is unique for each use of the notation N. Denoting the noisy data by / we then have / where
	/
	We solve the boundary integral equations (45) and (50) for the traces of the CGO solutions u1 and u2 for k ∈ [ − K, K]2, with K varying for each test problem in this work. The solution M(z, k), to the / equation (66), is computed in parallel by the method described in section 3.3. The low-pass filtering by taking k ∈ [ − K, K]2results in smooth functions Mjp, j, p = 1, 2, which are differentiated by centered finite differences to recover Q21, as described in section 3.4. The admittivity γ was then computed by (77).
	Define the dynamic range of the conductivity, and likewise the permittivity, by
	/
	where the maximum and minimum values are taken on the computational grid for the reconstruction and σ(K) denotes the reconstructed conductivity σ that was computed using a scattering transform computed on the truncated k grid.
	The first test problem is an idealized cross-section of a chest with a background admittivity of 1+0i. We do not include units or frequency in these examples, since our purpose is to demonstrate that the equations in this paper lead to a feasible reconstruction algorithm for complex admittivities. Reconstructions from more realistic admittivity distributions or experimental data are the topic of future work. Figure 1 shows the values of the admittivity in the simulated heart and lungs. Noise-free reconstructions with the scattering transform computed on a 128 × 128 grid for k ∈ [ − 5.5, 5.5]2 are found in figure 2. The reconstruction has a maximum conductivity and permittivity value of 1.1452 + 0.1802i, occurring in the heart region and a minimum of 0.8286 − 0.0247i, occurring in the lung region, resulting in a dynamic range of 79% for the conductivity and 60% for the permittivity when the negative permittivity value is set to 0. Although this decreases the dynamic range, we set the permittivity to 0 when it takes on a negative value in any pixel, since physically the permittivity cannot be less than 0. The reconstruction has the attributes of good spatial resolution and good uniformity in the reconstruction of the background and its value.
	/
	 
	Figure 1. The test problem in example 1.
	/
	Figure 2. Reconstruction from noise-free data for example 1 with the real part of γ (conductivity) on the left, and the imaginary part (permittivity) on the right. The cut-off frequency was K = 5.5. The dynamic range is 79% for the conductivity, and 60% for the permittivity.
	This second example was chosen with conductivity values the same as in example 1, but with permittivity values in which the 'lungs' match the permittivity of the background. This is motivated by the fact that at some frequencies, physiological features may match that of the surrounding tissue in the conductivity or permittivity component. This example, purely for illustration, mimics that phenomenon. The admittivity values can be found in figure 3. Noise-free reconstructions with the scattering transform computed on a 128 × 128 grid for k∈ [ − 5.5, 5.5]2 are found in figure 4. The maximum value of the conductivity and permittivity occur in the heart region, 1.1429 + 0.1828i, and the minimum value of the conductivity and permittivity is 0.8271 − 0.0204i. In this example, the dynamic range is 79% for the conductivity and 61% for the permittivity when the negative permittivity value is set to 0. Again the spatial resolution is quite good, and the background is quite homogeneous, although some small artifacts are present in both the real and imaginary parts.
	/
	Figure 3. The test problem in example 2. Notice that in this case, the permittivity of the lungs matches the permittivity of the background, and so only the heart should be visible in the imaginary component of the reconstruction.
	Example 3 is an admittivity distribution of slightly higher contrast, and a non-unitary background admittivity of γ0 = 0.8 + 0.3i. See figure 5 for a plot of the phantom with admittivity values for the regions. Due to the non-unitary background, the problem was scaled, as was done, for example, in,17,27 by defining a scaled admittivity / to have a unitary value in the neighborhood of the boundary and scaling the DN map by defining /, solving the scaled problem, and rescaling the reconstructed admittivity. The scattering data for the noise-free reconstruction was computed on a 128 × 128 grid for k ∈ [ − 5.2, 5.2]. Noisy data were computed as described in the beginning of this section, and the scattering data were also computed on a 128 × 128 grid for |k| ≤ 5.5. The reconstructions are found in figure 6. The maximum and minimum values are given in table 1. In this example, for the noise-free reconstruction, the dynamic range is 71% for the conductivity and 75% for the permittivity. Again, the spatial resolution is quite good. There is some degradation in the image and the reconstructed values in the presence of noise. We chose this noise level to be comparable to that of the 32 electrode ACT3 system at RPI.14 A thorough study of the effects of noise and stability of the algorithm with respect to perturbations in the data is beyond the scope of this paper. The scattering transform began to blow up for noisy data, requiring a truncation of the admissible scattering data to a circle of radius 5.5, resulting in a dynamic range of 62% for the conductivity and 68% for the permittivity. A thorough study of the effects of the choice of K and its method of selection is not included in this paper.
	/
	Figure 4. Reconstruction from noise-free data for example 2 with the real part of γ (conductivity) on the left, and the imaginary part (permittivity) on the right. The cut-off frequency was K = 5.5. The dynamic range is 79% for the conductivity, and 61% for the permittivity.
	/
	Figure 5. The test problem in example 3. In this case, the background admittivity is 0.8 + 0.3i, rather than 1 + 0i as in examples 1 and 2.
	/
	Figure 6. Top row: reconstruction from noise-free data for example 3. The cut-off frequency was K = 5.2. The dynamic range is 71% for the conductivity, and 75% for the permittivity. Bottom row: reconstruction from data with 0.01% added noise. The cut-off frequency was |k| ≤ 5.5. The dynamic range is 62% for the conductivity, and 68% for the permittivity.
	Table 1. Maximum and minimum values in example 3 with the non-unitary background were found in the appropriate organ region. The table indicates these values of the admittivity in the appropriate region.
	Reconstruction from noisy data
	Reconstruction from noise-free data
	Admittivity of test problem
	 
	0.9740 + 0.4679i (max)
	1.0246 + 0.5014i (max)
	1.2 + 0.6i
	Heart
	0.5390 + 0.1281i (min)
	0.5262 + 0.1258i (min)
	0.5 + 0.1i
	Lungs
	5. Conclusions
	A new direct method is presented for the reconstruction of a complex conductivity. This method has the attributes of being fully nonlinear, parallelizable, and the direct reconstruction does not require a high-frequency limit. It was demonstrated on numerically simulated data representing a cross-section of a human chest with discontinuous organ boundaries that the method yields reconstructions with good spatial resolution and dynamic range on non-noisy and noisy data. This was the first implementation of such a method, and although efforts were made to realistically simulate experimental data by including discontinuous organ boundaries, data on a finite number of electrodes, and simulated contact impedance, actual experimental data will surely prove more challenging. While this study with simulated data gives very promising results, more advanced studies of stability and robustness may be necessary to deal with the more difficult problem of reconstructions from experimental data.
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