140 research outputs found

    Imbalanced effector and regulatory cytokine responses may underlie mycobacterial immune restoration disease

    Get PDF
    Background: Immune restoration disease (IRD) is an adverse consequence of antiretroviral therapy, where the restored pathogen-specific response causes immunopathology. Mycobacteria are the pathogens that most frequently provoke IRD and mycobacterial IRD is a common cause of morbidity in HIV-infected patients co-infected with mycobacteria. We hypothesised that the excessive effector immune response in mycobacterial IRD reflects impaired regulation by IL-10. Results: We studied two patients who experienced mycobacterial IRD during ART. One patient developed a second episode of IRD with distinct clinical characteristics. Findings were compared with patients 'at risk' of developing IRD who had uneventful immune recovery. Peripheral blood mononuclear cells (PBMC) from all subjects were stimulated with mycobacterial antigens in the form of purified protein derivative (PPD). Supernatants were assayed for IFN? and IL-10. In response to PPD, PBMC from IRD patients generated IFN? during the first IRD episode, whilst cells from non-IRD controls produced more IL-10. Conclusion: We present preliminary data from two HIV-infected patients showing an imbalance between IFN? and IL-10 responses to mycobacterial antigens during mycobacterial IRD. Our findings suggest that imbalanced effector and regulatory cytokine responses should be investigated as a cause of IRD. © 2008 Lim et al; licensee BioMed Central Ltd

    Production of IgG2 Antibodies to Pneumococcal Polysaccharides After Vaccination of Treated HIV Patients May Be Augmented by IL-7Rα Signaling in ICOS+ Circulating T Follicular-Helper Cells

    Get PDF
    Greater understanding of factors influencing the maturation of antibody responses against pneumococcal polysaccharides (PcPs) may improve pneumococcal vaccination strategies. Although PcPs are type 2 T cell-independent antigens thought not to induce follicular immune responses, we have previously shown that IgG2 antibody responses against antigens in the 23-valent unconjugated PcP vaccine (PPV23) are associated with expansion of ICOS+ circulating T follicular helper (cTFH) cells in HIV seronegative subjects but not HIV patients. As IL-7Rα signaling in CD4+ T cells may affect TFH cell function and is adversely affected by HIV-1 infection, we have examined the relationship of IL-7Rα expression on ICOS+ cTFH cells with PcP-specific IgG2 antibody responses. PPV23 vaccination was undertaken in HIV patients receiving antiretroviral therapy (n = 25) and HIV seronegative subjects (n = 20). IL-7Rα expression on ICOS+ and ICOS− cTFH cells was assessed at day(D) 0, 7, and 28. Fold increase between D0 and D28 in serum IgG1 and IgG2 antibodies to PcP serotypes 4, 6B, 9V, and 14 and the frequency of IgG1+ and IgG2+ antibody secreting cells (ASCs) at D7 were also assessed. Decline in IL-7Rα expression on ICOS+ cTFH cells between D0 and D7 occurred in 75% of HIV seronegative subjects and 60% of HIV patients (Group A), with changes in IL-7Rα expression being more pronounced in HIV patients. Group A patients exhibited abnormally high IL-7Rα expression pre-vaccination, an association of serum IgG2, but not IgG1, antibody responses with a decline of IL-7Rα expression on ICOS+ cTFH cells between D0 and D7, and an association of higher IgG2+ ASCs with lower IL-7Rα expression on ICOS+ cTFH cells at D7. As decline of IL-7Rα expression on CD4+ T cells is an indicator of IL-7Rα signaling, our findings suggest that utilization of IL-7 by cTFH cells affects production of IgG2 antibodies to PPV23 antigens in some HIV patients

    Higher Serum Immunoglobulin G3 Levels May Predict the Development of Multiple Sclerosis in Individuals With Clinically Isolated Syndrome

    Get PDF
    Clinically isolated syndrome (CIS) is a first episode of neurological symptoms that may precede a diagnosis of multiple sclerosis (MS). Therefore, studying individuals with CIS may lead to breakthroughs in understanding the development and pathogenesis of MS. In this study, serum levels of immunoglobulin (Ig)G, IgA, IgM, and IgG1-4 were measured in 20 people with CIS and compared with those in 10 healthy controls (HC) and 8 people with MS. Serum Ig levels in individuals with CIS were compared with (a) the time to their conversion from CIS to MS, (b) serum levels of antibodies to Epstein-Barr virus, (c) frequencies of T regulatory (Treg), T follicular regulatory (Tfr), and B cell subsets, and (d) Treg/Tfr expression of Helios. Serum IgG, IgM, and IgG2 levels were significantly lower in people with CIS than HC, and IgG, IgM, and IgG1 levels were significantly lower in people with CIS than MS. After adjusting for age, sex, and serum 25(OH) vitamin D3 [25(OH)D] levels, CIS was associated with lower serum levels of IgG and IgG2 compared with HC (p = 0.001 and p < 0.001, respectively). People with MS had lower IgG2 levels (p < 0.001) and IgG2 proportions (%IgG; p = 0.007) compared with HC. After adjusting for age, sex, and 25(OH)D, these outcomes remained, in addition to lower serum IgA levels (p = 0.01) and increased IgG3 levels (p = 0.053) in people with MS compared with HC. Furthermore, serum from people with MS had increased proportions of IgG1 and IgG3 (p = 0.03 and p = 0.02, respectively), decreased proportions of IgG2 (p = 0.007), and greater ratios of "upstream" to "downstream" IgG subclasses (p = 0.001) compared with HC. Serum IgG3 proportions (%IgG) from people with CIS correlated with the frequency of plasmablasts in peripheral blood (p = 0.02). Expression of Helios by Treg and Tfr cell subsets from individuals with CIS correlated with levels of serum IgG2 and IgG4. IgG3 levels and proportions of IgG3 (%IgG) in serum at CIS diagnosis were inversely correlated with the time until conversion to MS (p = 0.018 and p < 0.001, respectively), suggesting they may be useful prognostic markers of individuals with CIS who rapidly convert to MS.ST, AJ, and MF-P are recipients of the Multiple Sclerosis Society of Western Australia (MSWA) Postdoctoral Research Fellowship. RL is a recipient of a National Health and Medical Research Council Senior Research Fellowship. This work is funded by a National Health and Medical Research Council Project Grant (ID 1067209)

    Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells

    No full text
    Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell–dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10– and IL-21–mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21–induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.This work was funded by project and program grants from the National Health and Medical Research Council (NHMRC) of Australia (to E.K. Deenick, C.S. Ma, D.A. Fulcher, M.C. Cook, and S.G. Tangye) and the Rockefeller University Center for 541 Clinical and Translational science (5UL1RR024143 to J.L. Casanova). C.S. Ma is a recipient of a Career Development Fellowship, L.J. Berglund is a recipient of a Medical Postgraduate Scholarship, and S.G. Tangye is a recipient of a Principal Research Fellowship from the NHMRC of Australia. L. Moens is the recipient of a Postdoctoral Fellowship from the Research Foundation-Flanders (FWO), Belgium

    Regulation of human CD4+ T cell differentiation

    Get PDF
    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12RÎČ1/TYK2 and IFN-ÎłR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12RÎČ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation

    B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans

    Get PDF
    Engagement of cytokine receptors by specific ligands activate Janus kinase–signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a potent regulator of B cell differentiation. We have studied patients with inactivating mutations in STAT1 or STAT3 to dissect their contribution to B cell function in vivo and in response to IL-21 in vitro. STAT3 mutations dramatically reduced the number of functional, antigen (Ag)-specific memory B cells and abolished the ability of IL-21 to induce naive B cells to differentiate into plasma cells (PCs). This resulted from impaired activation of the molecular machinery required for PC generation. In contrast, STAT1 deficiency had no effect on memory B cell formation in vivo or IL-21–induced immunoglobulin secretion in vitro. Thus, STAT3 plays a critical role in generating effector B cells from naive precursors in humans. STAT3-activating cytokines such as IL-21 thus underpin Ag-specific humoral immune responses and provide a mechanism for the functional antibody deficit in STAT3-deficient patients

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design

    No full text
    Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting “protective” HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients
    • 

    corecore