8 research outputs found
The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100'' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > â17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to gsim15% ± 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Iaâlike features (Ca-Ia objects) to those with SN Ib/câlike features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g â r â 1.5 mag) or green ( mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca ii]/[O i] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations
Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited
We present optical and near-infrared (NIR, Y-, J-, H-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a âmass step,â between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above . However, the mass step remains significant (3Ï) at optical wavelengths (g, r, i) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical
Recommended from our members
Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited
We present optical and near-infrared (NIR, Y-, J-, H-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a âmass step,â between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above . However, the mass step remains significant (3Ï) at optical wavelengths (g, r, i) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical
Recommended from our members
GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star-Black Hole Merger using an Automated Difference Imaging Pipeline for DECam
The discovery of a transient kilonova following the gravitational-wave (GW) event GW170817 highlighted the critical need for coordinated rapid and wide-field observations, inference, and follow-up across the electromagnetic spectrum. In the southern hemisphere, the Dark Energy Camera (DECam) on the Blanco 4 m telescope is well suited to this task, as it is able to cover wide fields quickly while still achieving the depths required to find kilonovae like the one accompanying GW170817 to âŒ500 Mpc, the binary neutron star (NS) horizon distance for current generation of LIGO/Virgo collaboration (LVC) interferometers. Here, as part of the multi-facility follow-up by the Global Relay of Observatories Watching Transients Happen collaboration, we describe the observations and automated data movement, data reduction, candidate discovery, and vetting pipeline of our target-of-opportunity DECam observations of S190426c, the first possible NS-black hole merger detected in GWs. Starting 7.5 hr after S190426c, over 11.28 hr of observations, we imaged an area of 525 deg2 (r band) and 437 deg2 (z band); this was 16.3% of the total original localization probability, and nearly all of the probability visible from the southern hemisphere. The machine-learning-based pipeline was optimized for fast turnaround, delivering transients for human vetting within 17 minutes, on average, of shutter closure. We reported nine promising counterpart candidates 2.5 hr before the end of our observations. One hour after our data-taking ended (roughly 20 hr after the announcement of S190426c), LVC released a refined skymap that reduced the probability coverage of our observations to 8.0%, demonstrating a critical need for localization updates on shorter (âŒhour) timescales. Our observations yielded no detection of a bona fide counterpart to m z = 21.7 and m r = 22.2 at the 5Ï level of significance, consistent with the refined LVC positioning. We view these observations and rapid inferencing as an important real-world test for this novel end-to-end wide-field pipeline
Fast-transient searches in real time with ZTFReST: Identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate
The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc-3 yr-1 (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory
Recommended from our members
GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg2 at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M ej < 0.04 M oË at polar viewing angles, or M ej < 0.03 M oË if the opacity is Îș < 2 cm2g-1. Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be Ï < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs