299 research outputs found

    Communicating the threat of emerging infections to the public.

    Get PDF
    Communication theory and techniques, aided by the electronic revolution, provide new opportunities and challenges for the effective transfer of laboratory, epidemiologic, surveillance, and other public health data to the public who funds them. We review the applicability of communication theory, particularly the audience-source-message-channel meta-model, to emerging infectious disease issues. Emergence of new infectious organisms, microbial resistance to therapeutic drugs, and increased emphasis on prevention have expanded the role of communication as a vital component of public health practice. In the absence of cure, as in AIDS and many other public health problems, an effectively crafted and disseminated prevention message is the key control measure. Applying communication theory to disease prevention messages can increase the effectiveness of the messages and improve public health

    Separation of Quasiparticle and Phononic Heat Currents in YBCO

    Full text link
    Measurements of the transverse (k_{xy}) and longitudinal (k_{xx}) thermal conductivity in high magnetic fields are used to separate the quasiparticle thermal conductivity (k_{xx}^{el}) of the CuO_2-planes from the phononic thermal conductivity in YBa_2Cu_3O_{7-\delta}. k_{xx}^{el} is found to display a pronounced maximum below T_c. Our data analysis reveals distinct transport (\tau) and Hall (\tau_H) relaxation times below T_c: Whereas \tau is strongly enhanced, \tau_H follows the same temperature dependence as above T_c

    Application of magnetic resonance imaging in transgenic and chemical mouse models of hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The molecular mechanisms underlying hepatocarcinogenesis are still poorly understood. Genetically modified mice are powerful tools to further investigate the mechanisms of HCC development. However, this approach is limited due to the lack of non-invasive detection methods in small rodents. The aim of this study was to establish a protocol for the non-invasive analysis of hepatocarcinogenesis in transgenic mice using a clinical 1.5 Tesla Magnetic Resonance Imaging scanner.</p> <p>Results</p> <p>As a model system we used hepatocyte-specific c-myc transgenic mice developing hepatocellular carcinoma at the age of 12-15 months. The scans of the murine livers included axial T2-weighted turbo-spin echo (TSE) images, axial T1-weighted and contrast enhanced T1-weighted gradient echo (fast field echo, FFE) and sagittal true Fast Imaging with Steady state Precession (true-FISP) images. Application of contrast agent was performed via tail vein-catheter and confirmed by evaluation of the altered longitudinal relaxation T1 time before and after application. Through technical adaptation and optimization we could detect murine liver lesions with a minimum diameter of approximately 2 mm and provided histopathological evidence that these MR findings correspond to hepatocellular carcinoma. Tumor growth was repeatedly measured using sequential MRI with intervals of 5 weeks and subsequent volumetric analysis facilitating direct comparison of tumor progression between individual animals. We finally demonstrated that our protocol is also applicable in the widely- used chemical model of N-nitrosodiethylamine-induced hepatocarcinogenesis.</p> <p>Conclusion</p> <p>Our protocol allows the non-invasive, early detection of HCC and the subsequent continuous monitoring of liver tumorgenesis in transgenic mice thereby facilitating future investigations of transgenic tumor mouse models of the liver.</p

    Contrasting sensitivity of lake sediment n-alkanoic acids and n-alkanes to basin-scale vegetation and regional-scale precipitation δ2H in the Adirondack Mountains, NY (USA)

    Get PDF
    The hydrogen isotope values of plant waxes (δ2Hwax) primarily reflect plant source water. δ2Hwax preserved in lake sediments has therefore been widely used to investigate past hydroclimate. The processes by which plant waxes are integrated at regional and catchment scales are poorly understood and may affect the δ2Hwax values recorded in sediments. Here, we assess the variability of sedimentary δ2Hwax for two plant wax compound classes (n-alkanes and n-alkanoic acids) across 12 lakes in the Adirondack Mountains that receive similar regional precipitation δ2H but vary at the catchment-scale in terms of vegetation structure and basin morphology. Total long-chain (n-C27 to n-C35) alkane concentrations were similar across all sites (191 ± 53 µg/g TOC) while total long-chain (n-C28 and n-C30) alkanoic acid concentrations were more variable (117 ± 116 µg/g TOC) and may reflect shoreline vegetation composition. Lakes with shorelines dominated by evergreen gymnosperm plants had significantly higher concentrations of long-chain n-alkanoic acids relative to n-alkanes, consistent with our observations that deciduous angiosperms produced more long-chain n-alkanes than evergreen gymnosperms (471 and 33 µg/g TOC, respectively). In sediments, the most abundant chain lengths in each compound class were n-C29 alkane and n-C28 alkanoic acid, which had mean δ2H values of −188 ± 6‰ and −164 ± 9‰, respectively. Across sites, the range in sedimentary n-C29 alkane (22‰) and n-C28 alkanoic acid δ2H (35‰) was larger than expected based on the total range in modeled mean annual precipitation δ2H (4‰). We observed larger mean εapp (based on absolute values) for n-alkanes (−123‰) than for n-alkanoic acids (−97‰). Across sites, the δ2H offset between n-C29 alkane and the biosynthetic precursor n-C30 alkanoic acid (εC29-C30) ranged from −8 to −58‰, which was more variable than expected based on observations in temperate trees (−20 to −30‰). Sediments with greater aquatic organic matter contributions (lower C/N ratios) had significantly larger (absolute) εC29-C30 values, which may reflect long-chain n-alkanoic acids from aquatic sources. Concentration and δ2Hwax data in Adirondack lakes suggest that long-chain n-alkanes are more sensitive to regional-scale precipitation signals, while n-alkanoic acids are more sensitive to basin-scale differences in catchment vegetation and wax sourcing

    Quantum melting of incommensurate domain walls in two dimensions

    Full text link
    Quantum fluctuations of periodic domain-wall arrays in two-dimensional incommensurate states at zero temperature are investigated using the elastic theory in the vicinity of the commensurate-incommensurate transition point. Both stripe and honeycomb structures of domain walls with short-range interactions are considered. It is revealed that the stripes melt and become a stripe liquid in a large-wall-spacing (low-density) region due to dislocations created by quantum fluctuations. This quantum melting transition is of second order and characterized by the three-dimensional XY universality class. Zero-point energies of the stripe and honeycomb structures are calculated. As a consequence of these results, phase diagrams of the domain-wall solid and liquid phases in adsorbed atoms on graphite are discussed for various domain-wall masses. Quantum melting of stripes in the presence of long-range interactions that fall off as power laws is also studied. These results are applied to incommensurate domain walls in two-dimensional adsorbed atoms on substrates and in doped antiferromagnets, e.g. cuprates and nickelates.Comment: 11 pages, 5 figure

    Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures

    Get PDF
    The idea to utilize not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012^{12} Hz) emission spectroscopy, we demonstrate optical generation of spin-polarized electric currents at the interfaces of metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.Comment: 3 figures and 2 tables in the main tex

    Adsorption Isotherms of Hydrogen: The Role of Thermal Fluctuations

    Full text link
    It is shown that experimentally obtained isotherms of adsorption on solid substrates may be completely reconciled with Lifshitz theory when thermal fluctuations are taken into account. This is achieved within the framework of a solid-on-solid model which is solved numerically. Analysis of the fluctuation contributions observed for hydrogen adsorption onto gold substrates allows to determine the surface tension of the free hydrogen film as a function of film thickness. It is found to decrease sharply for film thicknesses below seven atomic layers.Comment: RevTeX manuscript (3 pages output), 3 figure
    corecore