1,398 research outputs found

    On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Get PDF
    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective

    Global well-posedness for the KP-I equation on the background of a non localized solution

    Full text link
    We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in xx and yy periodic or conversely)

    Structure, mass and stability of galactic disks

    Full text link
    In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures is available at http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd

    Spatial variation in the responses of the surface external and induced magnetic field to the solar wind

    Get PDF
    We analyse the spatial variation in the response of the surface geomagnetic field (or the equivalent ionospheric current) to variations in the solar wind. Specifically, we regress a reanalysis of surface external and induced magnetic field (SEIMF) variations onto measurements of the solar wind. The regression is performed in monthly sets, independently for 559 regularly‐spaced locations covering the entire northern polar region above 50° magnetic latitude. At each location, we find the lag applied to the solar wind data that maximises the correlation with the SEIMF. The resulting spatial maps of these independent lags and regression coefficients provide a model of the localised SEIMF response to variations in the solar wind, which we call ‘Spatial Information from Distributed Exogenous Regression’ (SPIDER). We find that the lag and regression coefficients vary systematically with ionospheric region, season, and solar wind driver. In the polar cap region the SEIMF is best described by the By component of the interplanetary magnetic field (50–75% of total variance explained) at a lag ∼20–25 min. Conversely, in the auroral zone the SEIMF is best described by the solar wind ϵ function (60–80% of total variance explained), with a lag that varies with season and magnetic local time (MLT), from ∼15–20 min for dayside and afternoon MLT (except in Oct‐Dec) to typically 30–40 min for nightside and morning MLT, and even longer (60–65 min) around midnight MLT

    Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments

    Full text link
    The union of quantum fluids research with nanoscience is rich with opportunities for new physics. The relevant length scales in quantum fluids, 3He in particular, are comparable to those possible using microfluidic and nanofluidic devices. In this article, we will briefly review how the physics of quantum fluids depends strongly on confinement on the microscale and nanoscale. Then we present devices fabricated specifically for quantum fluids research, with cavity sizes ranging from 30 nm to 11 microns deep, and the characterization of these devices for low temperature quantum fluids experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic

    A lattice model for the kinetics of rupture of fluid bilayer membranes

    Full text link
    We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion), the thickness of the hydrophobic part of the bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium ``phase diagram'' is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first order rupture line is found with increasing tension, and a continuous increase in proto-pore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated PC lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.Comment: 15 pages, 8 figure

    Thermodynamic properties of thin films of superfluid 3He-A

    Full text link
    The pairing correlations in superfluid He-3 are strongly modified by quasiparticle scattering off a surface or an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation spectrum and the free energy for thin films of superfluid He-3. Both specular and diffuse scattering by a substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at zero pressure. We obtain new results for the phase diagram, free energy, entropy and specific heat of thin films of superfluid He-3.Comment: Replaced with an updated versio

    The meaning in grandiose delusions: measure development and cohort studies in clinical psychosis and non-clinical general population groups in the UK and Ireland

    Get PDF
    Background The content of grandiose delusions—inaccurate beliefs that one has special powers, wealth, mission, or identity—is likely to be highly meaningful. The meaning, for example providing a sense of purpose, could prove to be a key factor in the delusion taking hold. We aimed to empirically define and develop measures of the experience of meaning in grandiose delusions and the sources of this meaning, and to test whether severity of grandiosity in clinical and non-clinical populations is associated with level of meaning. Methods We did a cross-sectional self-report questionnaire study in two cohorts: non-clinical participants aged 18 years and older, with UK or Irish nationality or residence; and patients with affective or non-affective psychosis diagnoses, aged 16 years and older, and accessing secondary care mental health services in 39 National Health Service providers in England and Wales. Participants with high grandiosity completed two large item pools: one assessing the experience of meaning in grandiose delusions (Grandiosity Meaning Measure [termed gram]) and one assessing the sources of meaning (Grandiosity Meaning Measure–Sources [termed grams]). The Grandiosity Meaning Measure and Grandiosity Meaning Measure–Sources were developed using exploratory factor analysis and confirmatory factor analysis. Structural equation modelling was used to test the associations of meaning with the severity of grandiosity. The primary outcome measure for grandiosity was the Specific Psychotic Experiences Questionnaire (grandiosity subscale) and associations were tested with the Grandiosity Meaning Measure and the Grandiosity Meaning Measure–Sources. Findings From Aug 30, 2019, to Nov 21, 2020, 13 323 non-clinical participants were enrolled. 2821 (21%) were men and 10 134 (76%) were women, 11 974 (90%) were White, and the mean age was 39·5 years (SD 18·6 [range 18–93]). From March 22, 2021, to March 3, 2022, 798 patients with psychosis were enrolled. 475 (60%) were men and 313 (39%) were women, 614 (77%) were White, and the mean age was 43·4 years (SD 13·8 [range 16–81]). The experience of meaning in relation to grandiose delusions had three components: coherence, purpose, and significance. The sources of meaning had seven components: positive social perceptions, spirituality, overcoming adversity, confidence in self among others, greater good, supporting loved ones, and happiness. The measurement of meaning was invariant across clinical and non-clinical populations. In the clinical population, each person typically endorsed multiple meanings and sources of meaning for the grandiose delusion. Meaning in grandiose delusions was strongly associated with severity of grandiosity, explaining 53·5% of variance, and with grandiose delusion conviction explaining 27·4% of variance. Grandiosity was especially associated with sense of purpose, and grandiose delusion conviction with coherence. Similar findings were found for the non-clinical population. Interpretation Meaning is inherently tied to grandiose delusions. This study provides a framework for research and clinical practice to understand the different types of meaning of grandiosity. The framework is likely to have clinical use in psychological therapy to help guide patients to find sources of equivalent meaning from other areas of their lives and thereby reduce the extent to which the grandiose delusion is needed

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    Quantum Cryptography Using Single Particle Entanglement

    Full text link
    A quantum cryptography scheme based on entanglement between a single particle state and a vacuum state is proposed. The scheme utilizes linear optics devices to detect the superposition of the vacuum and single particle states. Existence of an eavesdropper can be detected by using a variant of Bell's inequality.Comment: 4 pages, 3figures, revte
    corecore