90 research outputs found

    Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    Get PDF
    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile

    Comparison of Solar Electric and Chemical Propulsion Missions

    Get PDF
    Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed

    On the accuracy and usefulness of analytic energy models for contemporary multicore processors

    Full text link
    This paper presents refinements to the execution-cache-memory performance model and a previously published power model for multicore processors. The combination of both enables a very accurate prediction of performance and energy consumption of contemporary multicore processors as a function of relevant parameters such as number of active cores as well as core and Uncore frequencies. Model validation is performed on the Sandy Bridge-EP and Broadwell-EP microarchitectures. Production-related variations in chip quality are demonstrated through a statistical analysis of the fit parameters obtained on one hundred Broadwell-EP CPUs of the same model. Insights from the models are used to explain the performance- and energy-related behavior of the processors for scalable as well as saturating (i.e., memory-bound) codes. In the process we demonstrate the models' capability to identify optimal operating points with respect to highest performance, lowest energy-to-solution, and lowest energy-delay product and identify a set of best practices for energy-efficient execution

    Energy aware approach for HPC systems

    Get PDF
    International audienceHigh‐performance computing (HPC) systems require energy during their full life cycle from design and production to transportation to usage and recycling/dismanteling. Because of increase of ecological and cost awareness, energy performance is now a primary focus. This chapter focuses on the usage aspect of HPC and how adapted and optimized software solutions could improve energy efficiency. It provides a detailed explanation of server power consumption, and discusses the application of HPC, phase detection, and phase identification. The chapter also suggests that having the load and memory access profiles is insufficient for an effective evaluation of the power consumed by an application. The available leverages in HPC systems are also shown in detail. The chapter proposes some solutions for modeling the power consumption of servers, which allows designing power prediction models for better decision making.These approaches allow the deployment and usage of a set of available green leverages, permitting energy reduction

    Propulsion Investigation for Zero and Near-Zero Emissions Aircraft

    Get PDF
    As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only

    Oocyte expression with injection of purified T7 RNA polymerase.

    Get PDF
    International audienceThe Xenopus oocyte is a widely used system for protein expression. Investigators have had the choice between two different techniques: injection into the cytoplasm of in vitro transcribed complementary RNA (cRNA) or injection into the nucleus of complementary DNA (cDNA). We report on a third expression technique that is based on the combined injection of cDNA and purified T7 RNA polymerase directly into the cytoplasm of oocytes

    The estrogen-injected female mouse: new insight into the etiology of PCOS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Female mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland.</p> <p>Methods, Results and Conclusion</p> <p>A putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS) was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We propose that in utero exposure to excessive levels of steroids such as estrogen has a long-term effect on the ability of the thymus to produce regulatory T cells. In female offspring this can lead to PCOS.</p

    Airframe Thermal Management System Modeling in NPSS

    No full text
    • 

    corecore