462 research outputs found

    The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    Get PDF
    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects

    Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    Get PDF
    We present a V-I color-magnitude diagram for a region 1'-2' from the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity. This distribution cannot be explained by a spread in age. The blue side of the giant branch rises to M_I ~ -4.0 and can be fitted with isochrones having [Fe/H] ~ -1.5. The red side consists of a heavily populated and dominant sequence that tops out at M_I ~ -3.2, and extends beyond V-I=4. This sequence can be fitted with isochrones with -0.2 < [Fe/H] < +0.1, for ages running from 15 Gyr to 5 Gyr respectively. We do not find the optically bright asymptotic giant branch stars seen in previous ground-based work and argue that the majority of them were artifacts of crowding. Our results are consistent with the presence of the infrared-luminous giants found in ground-based studies, though their existence cannot be directly confirmed by our data. There is little evidence for an extended or even a red horizontal branch, but we find a strong clump on the giant branch itself. If the age spread is not extreme, the distribution of metallicities in M32 is considerably narrower than that of the closed-box model of chemical evolution, and also appears somewhat narrower than that of the solar neighborhood. Overall, the M32 HST color-magnitude diagram is consistent with the average luminosity-weighted age of 8.5 Gyr and [Fe/H] = -0.25 inferred from integrated spectral indices.Comment: 22 pages, AASTeX, aaspp4 and flushrt style files included, 11 postscript figures, figures 1,2,5,7, and 8 available at ftp://bb3.jpl.nasa.gov/pub/m32 . Submitted to the Astronomical Journa

    The Stellar Content of M31's Bulge

    Full text link
    In this paper we analyze the stellar populations present in M31 using nine sets of adjacent HST-NICMOS Camera 1 and 2 fields with galactocentric distances ranging from 2' to 20'. These infrared observations provide some of the highest spatial resolution measurements of M31 to date; our data place tight constraints on the maximum luminosities of stars in the bulge of M31. The tip of the red giant branch is clearly visible at Mbol ~ -3.8, and the tip of the asymptotic giant branch (AGB) extends to Mbol ~ -5. This AGB peak luminosity is significantly fainter than previously claimed; through direct comparisons and simulations we show that previous measurements were affected by image blending. We do observe field-to-field variations in the luminosity functions, but simulations show that these differences can be produced by blending in the higher surface brightness fields. We conclude that the red giant branch of the bulge of M31 is not measurably different from that of the Milky Way's bulge. We also find an unusually high number of bright blueish stars (7.3/arcmin^2) which appear to be Galactic foreground stars.Comment: 28 pages, 20 figures (posted here with significantly reduced resolution), accepted to the A

    Late-time Light Curves of Type II Supernovae: Physical Properties of SNe and Their Environment

    Full text link
    We present BVRIJHK band photometry of 6 core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc measured at late epochs (>2 yrs) based on Hubble Space Telescope (HST), Gemini north, and WIYN telescopes. We also show the JHK lightcurves of a supernova impostor SN 2008S up to day 575. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et, as well. Combining our data with previously published data, we show VRIJHK-band lightcurves and estimate decline magnitude rates at each band in 4 different phases. Our prior work on these lightcurves and other data indicate that dust is forming in our targets from day ~300-400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from the late time light curves. We estimate 56Ni masses for our targets (0.5-14 x 10^{-2} Msun) from the bolometric lightcurve of each for days ~150-300 using SN 1987A as a standard (7.5 x 10^{-2} Msun). The flattening or sometimes increasing fluxes in the late time light curves of SNe 2002hh, 2003gd, 2004et and 2006bc indicate the presence of light echos. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm^{-3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (~1 cm^{-3}). The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 x 10^{-2}, supporting the previous work by Maeda et al. (2010), who focus on more massive Type II SNe. The dust mass does not appear to be correlated with progenitor mass.Comment: We corrected the 56Ni mass of SN2005cs and Figures 8 (a) and 8 (c

    A sub-horizon framework for probing the relationship between the cosmological matter distribution and metric perturbations

    Full text link
    The relationship between the metric and nonrelativistic matter distribution depends on the theory of gravity and additional fields, providing a possible way of distinguishing competing theories. With the assumption that the geometry and kinematics of the homogeneous universe have been measured to sufficient accuracy, we present a procedure for understanding and testing the relationship between the cosmological matter distribution and metric perturbations (along with their respective evolution) using the ratio of the physical size of the perturbation to the size of the horizon as our small expansion parameter. We expand around Newtonian gravity on linear, subhorizon scales with coefficient functions in front of the expansion parameter. Our framework relies on an ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii) the metric variables (and any additional fields) are generated and supported by the nonrelativistic matter overdensity. The scales for which our framework is intended are small enough so that cosmic variance does not significantly limit the accuracy of the measurements and large enough to avoid complications from nonlinear effects and baryon cooling. The coefficient functions provide a general framework for contrasting the consequences of Lambda CDM and its alternatives. We calculate the coefficient functions for general relativity with a cosmological constant and dark matter, GR with dark matter and quintessence, scalar-tensor theories, f(R) gravity and braneworld models. We identify a possibly unique signature of braneworld models. Constraining the coefficient functions provides a streamlined approach for testing gravity in a scale dependent manner. We briefly discuss the observations best suited for an application of our framework.Comment: Updated references and minor changes to match the published version in MNRA

    ILEEM-survey on the Heart Team approach and team training for lead extraction procedures

    Get PDF
    Background: The Heart Team approach has become an integral part of modern cardiovascular medicine. To evaluate current opinions and real-world practice among lead extraction practitioners, an online survey was created and distributed among a pool of lead extraction specialists participating in the International Lead Extraction Expert Meeting (ILEEM) 2018. Methods: The online survey consisted of 10 questions and was performed using an online survey tool (www.surveymonkey.com). The collector link was sent to 48 lead extraction experts via email. Results: A total of 43 answers were collected (89% return rate) from lead extraction experts in 16 different countries. A great majority (83.7%) of the respondents performed more than 30 lead extraction procedures per year. The most common procedural environment in this survey was the hybrid operating room (67.4%). Most procedures were performed by electrophysiologists and cardiologists (80.9%). Important additional members of the current lead extraction teams were cardiac surgeons (79.1%), anesthesiologists (95.3%) and operating room scrub nurses (76.7%). An extended Heart Team is regarded beneficial for patient care by 86.0%, with potential further members being infectious diseases specialists, intensivists and radiologists. Team training activities are performed in 48.8% of participating centers. Conclusions: This survey supports the importance of establishing lead extraction Heart Teams in specialized lead extraction centers to potentially improve patient outcomes. The concept of a core and an extended heart team approach in lead extraction procedures is introduced
    corecore