71 research outputs found

    A proof-of-concept study on mortality prediction with machine learning algorithms using burn intensive care data

    Get PDF
    INTRODUCTION: Burn injuries are a common traumatic injury. Large burns have high mortality requiring intensive care and accurate mortality predictions. To assess if machine learning (ML) could improve predictions, ML algorithms were tested and compared with the original and revised Baux score. METHODS: Admission data and mortality outcomes were collected from patients at Uppsala University Hospital Burn Centre from 2002 to 2019. Prognostic variables were selected, ML algorithms trained and predictions assessed by analysis of the area under the receiver operating characteristic curve (AUC). Comparison was made with Baux scores using DeLong test. RESULTS: A total of 17 prognostic variables were selected from 92 patients. AUCs in leave-one-out cross-validation for a decision tree model, an extreme boosting model, a random forest model, a support-vector machine (SVM) model and a generalised linear regression model (GLM) were 0.83 (95% confidence interval [CI] = 0.72-0.94), 0.92 (95% CI = 0.84-1), 0.92 (95% CI = 0.84-1), 0.92 (95% CI = 0.84-1) and 0.84 (95% CI = 0.74-0.94), respectively. AUCs for the Baux score and revised Baux score were 0.85 (95% CI = 0.75-0.95) and 0.84 (95% CI = 0.74-0.94). No significant differences were observed when comparing ML algorithms with Baux score and revised Baux score. Secondary variable selection was made to analyse model performance. CONCLUSION: This proof-of-concept study showed initial credibility in using ML algorithms to predict mortality in burn patients. The sample size was small and future studies are needed with larger sample sizes, further variable selections and prospective testing of the algorithms. LAY SUMMARY: Burn injuries are one of the most common traumatic injuries especially in countries with limited prevention and healthcare resources. To treat a patient with large burns who has been admitted to an intensive care unit, it is often necessary to assess the risk of a fatal outcome. Physicians traditionally use simplified scores to calculate risks. One commonly used score, the Baux score, uses age of the patient and the size of the burn to predict the risk of death. Adding the factor of inhalation injury, the score is then called the revised Baux score. However, there are a number of additional causes that can influence the risk of fatal outcomes that Baux scores do not take into account. Machine learning is a method of data modelling where the system learns to predict outcomes based on previous cases and is a branch of artificial intelligence. In this study we evaluated several machine learning methods for outcome prediction in patients admitted for burn injury. We gathered data on 93 patients at admission to the intensive care unit and our experiments show that machine learning methods can reach an accuracy comparable with Baux scores in calculating the risk of fatal outcomes. This study represents a proof of principle and future studies on larger patient series are required to verify our results as well as to evaluate the methods on patients in real-life situations.Peer reviewe

    Evaluating topical opioid gel on donor site pain: A small randomised double blind controlled trial

    Get PDF
    AbstractBackgroundAutologous donor skin harvested for transplantation is a common procedure in patients with burns, and patients often feel more pain at the donor site than is justified by the extent of trauma. Topical morphine gels have been thought to have an effect on peripheral opioid receptors by creating antinociceptive and anti-inflammatory effects, which could potentially reduce the systemic use of morphine-like substances and their adverse effects.MethodsWe therefore did a paired, randomised, double-blind placebo study to investigate the effect of morphine gel and placebo on dual donor sites that had been harvested in 13 patients. Pain was measured on a visual analogue scale (VAS) 15 times in a total of 5 days.ResultsThe mean (SD) VAS was 1.6 (2.3) for all sites, 1.5 (2.2) for morphine, and 2.0 (2.5) for placebo. The pain relieving effects of morphine gel were not significantly better than placebo.ConclusionThe assessment of pain at donor sites is subjective, and more systematic and objective studies are needed

    Comparing ambient, air-convection, and fluid-convection heating techniques in treating hypothermic burn patients, a clinical RCT

    Get PDF
    Background: Hypothermia in burns is common and increases morbidity and mortality. Several methods are available to reach and maintain normal core body temperature, but have not yet been evaluated in critical care for burned patients. Our units ordinary technique for controlling body temperature (Bair Hugger®+ radiator ceiling + bed warmer + Hotline®) has many drawbacks e.g.; slow and the working environment is hampered.The aim of this study was to compare our ordinary heating technique with newly-developed methods: the Allon™2001 Thermowrap (a temperature regulating water-mattress), and Warmcloud (a temperature regulating air-mattress).Methods: Ten consecutive burned patients (andgt; 20% total burned surface area and a core temperature andlt; 36.0C) were included in this prospective, randomised, comparative study. Patients were randomly exposed to 3 heating methods. Each treatment/measuring-cycle lasted for 6 hours. Each heating method was assessed for 2 hours according to a randomised timetable. Core temperature was measured using an indwelling (bladder) thermistor. Paired t-tests were used to assess the significance of differences between the treatments within the patients. ANOVA was used to assess the differences in temperature from the first to the last measurement among all treatments. Three-way ANOVA with the Tukey HSD post hoc test and a repeated measures ANOVA was used in the same manner, but included information about patients and treatment/measuring-cycles to control for potential confounding. Data are presented as mean (SD) and (range). Probabilities of less than 0.05 were accepted as significant.Results: The mean increase, 1.4 (SD 0.6C; range 0.6-2.6C) in core temperature/treatment/measuring-cycle highly significantly favoured the Allon™2001 Thermowrap in contrast to the conventional method 0.2 (0.6)C (range -1.2 to 1.5C) and the Warmcloud 0.3 (0.4)C (range -0.4 to 0.9C). The procedures for using the Allon™2001 Thermowrap were experienced to be more comfortable and straightforward than the conventional method or the Warmcloud.Conclusions: The Allon™2001 Thermowrap was more effective than the Warmcloud or the conventional method in controlling patients temperatures. © 2011 Kjellman et al; licensee BioMed Central Ltd

    A fossil winonaite-like meteorite in Ordovician limestone: A piece of the impactor that broke up the L-chondrite parent body?

    Get PDF
    AbstractAbout a quarter of all meteorites falling on Earth today originate from the breakup of the L-chondrite parent body ∼470 Ma ago, the largest documented breakup in the asteroid belt in the past ∼3 Ga. A window into the flux of meteorites to Earth shortly after this event comes from the recovery of about 100 fossil L chondrites (1–21 cm in diameter) in a quarry of mid-Ordovician limestone in southern Sweden. Here we report on the first non-L-chondritic meteorite from the quarry, an 8 cm large winonaite-related meteorite of a type not known among present-day meteorite falls and finds. The noble gas data for relict spinels recovered from the meteorite show that it may be a remnant of the body that hit and broke up the L-chondrite parent body, creating one of the major asteroid families in the asteroid belt. After two decades of systematic recovery of fossil meteorites and relict extraterrestrial spinel grains from marine limestone, it appears that the meteorite flux to Earth in the mid-Ordovician was very different from that of today

    Integration of molecular profiles in a longitudinal wellness profiling cohort

    Get PDF
    An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine

    Matrix Metalloproteinases-8 and-9 and Tissue Inhibitor of Metalloproteinase-1 in Burn Patients. A Prospective Observational Study

    Get PDF
    Introduction Matrix metalloproteinases (MMPs) -8 and -9 are released from neutrophils in acute inflammation and may contribute to permeability changes in burn injury. In retrospective studies on sepsis, levels of MMP-8, MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) differed from those of healthy controls, and TIMP-1 showed an association with outcome. Our objective was to investigate the relationship between these proteins and disease severity and outcome in burn patients. Methods In this prospective, observational, two-center study, we collected plasma samples from admission to day 21 post-burn, and burn blister fluid samples on admission. We compared MMP-8, -9, and TIMP-1 levels between TBSA20% (N = 30) injured patients and healthy controls, and between 90-day survivors and non-survivors. MMP-8, -9, and TIMP-1 levels at 24-48 hours from injury, their maximal levels, and their time-adjusted means were compared between groups. Correlations with clinical parameters and the extent of burn were analyzed. MMP-8, -9, and TIMP-1 levels in burn blister fluids were also studied. Results Plasma MMP-8 and -9 were higher in patients than in healthy controls (P20% groups. MMP-8 and -9 were not associated with clinical severity or outcome measures. TIMP-1 differed significantly between patients and controls (P20% groups (PPeer reviewe

    In vitro and in vivo studies of tissue engineering in reconstructive plastic surgery

    No full text
    To correct, improve, and maintain tissues, and their functions, are common denominators in tissue engineering and reconstructive plastic surgery. This can be achieved by using autolo-gous tissues as in flaps or transplants. However, often autologous tissue is not useable. This is one of the reasons for the increasing interest among plastic surgeons for tissue engineering, and it has led to fruitful cross-fertilizations between the fields. Tissue engineering is defined as an interdisciplinary field that applies the principles of engineering and life sciences for development of biologic substitutes designed to maintain, restore, or improve tissue functions. These methods have already dramatically improved the possibilities to treat a number of medical conditions, and can arbitrarily be divided into two main principles: &gt; Methods where autologous cells are cultured in vitro and transplanted by means of a cell suspension, a graft, or in a 3-D biodegradable matrix as carrier. &gt; Methods where the tissue of interest is stimulated and given the right prerequisites to regenerate the tissue in vivo/situ with the assistance of implantation of specially designed materials, or application of substances that regulate cell functions - guided tissue regeneration. We have shown that human mammary epithelial cells and adipocytes could be isolated from tissue biopsies and that the cells kept their proliferative ability. When co-cultured in a 3-D matrix, patterns of ductal structures of epithelial cells embedded in clusters of adipocytes, mimicking the in vivo architecture of human breast tissue, were seen. This indicated that human autologous breast tissue can be regenerated in vitro. The adipose tissue is also generally used to correct soft tissue defects e.g. by autologous fat transplantation. Alas 30-70% of the transplanted fat is commonly resorbed. Preadipocytes are believed to be hardier and also able to replicate, and hence, are probably more useful for fat transplantation. We showed that by using cell culture techniques, significantly more pre-adipocytes could survive and proliferate in vitro compared to two clinically used techniques of fat graft handling. Theoretically, a biopsy of fat could generate enough preadipocytes to seed a biodegradable matrix that is implanted to correct a defect. The cells in the matrix will replicate at a rate that parallels the vascular development, the matrix subsequently degrades and the cell-matrix complex is replaced by regenerated, vascularized adipose tissue. We further evaluated different biodegradable scaffolds usable for tissue engineering of soft tissues. A macroporous gelatin sphere showed several appealing characteristics. A number of primary human ecto- and mesodermal cells were proven to thrive on the gelatin spheres when cultured in spinner flasks. As the spheres are biodegradable, it follows that the cells can be cultured and expanded on the same substrate that functions as a transplantation vehicle and scaffold for tissue engineering of soft tissues. To evaluate the in vivo behavior of cells and gelatin spheres, an animal study was performed where human fibroblasts and preadipocytes were cultured on the spheres and injected intra-dermally. Cell-seeded spheres were compared with injections of empty spheres and cell suspensions. The pre-seeded spheres showed a near complete regeneration of the soft tissues with neoangiogenesis. Some tissue regeneration was seen also in the ‘naked’ spheres but no effect was shown by cell injections. In a human pilot-study, intradermally injected spheres were compared with hyaluronan. Volume-stability was inferior to hyaluronan but a near complete regeneration of the dermis was proven, indicating that the volume-effect is permanent in contrast to hyaluronan which eventually will be resorbed. Further studies are needed to fully evaluate the effect of the macroporous gelatin spheres, with or without cellular pre-seeding, as a matrix for guided tissue regeneration. However, we believe that the prospect to use these spheres as an injectable, 3D, biodegradable matrix will greatly enhance our possibilities to regenerate tissues through guided tissue regeneration.On the day of the defence date the status of article V was In Press.</p
    corecore