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A proof-of-concept study on
mortality prediction with machine
learning algorithms using burn
intensive care data

Jian Fransén1 , Johan Lundin2,3, Filip Fredén4 andFredrikHuss5

Abstract

Introduction: Burn injuries are a common traumatic injury. Large burns have high mortality requiring intensive
care and accurate mortality predictions. To assess if machine learning (ML) could improve predictions, ML algo-
rithms were tested and compared with the original and revised Baux score.

Methods: Admission data and mortality outcomes were collected from patients at Uppsala University Hospital
Burn Centre from 2002 to 2019. Prognostic variables were selected, ML algorithms trained and predictions
assessed by analysis of the area under the receiver operating characteristic curve (AUC). Comparison was
made with Baux scores using DeLong test

Results: A total of 17 prognostic variables were selected from 92 patients. AUCs in leave-one-out cross-validation
for a decision tree model, an extreme boosting model, a random forest model, a support-vector machine (SVM)
model and a generalised linear regression model (GLM) were 0.83 (95% confidence interval [CI] = 0.72–0.94),
0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1) and 0.84 (95% CI = 0.74–0.94), respec-
tively. AUCs for the Baux score and revised Baux score were 0.85 (95% CI = 0.75–0.95) and 0.84 (95% CI = 0.74–
0.94). No significant differences were observed when comparing ML algorithms with Baux score and revised Baux
score. Secondary variable selection was made to analyse model performance.

Conclusion: This proof-of-concept study showed initial credibility in using ML algorithms to predict mortality in
burn patients. The sample size was small and future studies are needed with larger sample sizes, further variable
selections and prospective testing of the algorithms.
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Lay Summary

Burn injuries are one of the most common traumatic injuries especially in countries with limited prevention
and healthcare resources. To treat a patient with large burns who has been admitted to an intensive care
unit, it is often necessary to assess the risk of a fatal outcome. Physicians traditionally use simplified
scores to calculate risks. One commonly used score, the Baux score, uses age of the patient and the size
of the burn to predict the risk of death. Adding the factor of inhalation injury, the score is then called
the revised Baux score. However, there are a number of additional causes that can influence the risk of
fatal outcomes that Baux scores do not take into account. Machine learning is a method of data modelling
where the system learns to predict outcomes based on previous cases and is a branch of artificial intelligence.
In this study we evaluated several machine learningmethods for outcome prediction in patients admitted for
burn injury. We gathered data on 93 patients at admission to the intensive care unit and our experiments
show that machine learning methods can reach an accuracy comparable with Baux scores in calculating
the risk of fatal outcomes. This study represents a proof of principle and future studies on larger patient
series are required to verify our results as well as to evaluate the methods on patients in real-life situations.

Introduction

Burns were the fourth most common type of trau-
matic injury in 2004 worldwide and 11 million
people were injured through burns,1 with an esti-
mated mortality of 180.000 annually.2 In Sweden,
approximately 36,000 people are treated for
burns annually with around 1300 needing hos-
pital care.3

The need for the prediction of burn outcome
has led to the invention of several scoring systems.
One of the common mortality prediction scores
for burns is the Baux score or the revised Baux
score. The Baux score is calculated by adding
the total body surface area (TBSA) burned (as a
percentage) to the patient’s age. With revision,
the presence of an inhalation injury adds
another 17 points to the final score where
higher scores indicate increased risk.4,5 The
Baux score and the revised Baux score have
been shown to be reliable,6–9 but it is suggested
that more advanced statistical models could
produce better predictions.5

Examples of other burn scores are the
Abbreviated Burn Severity Index (ABSI),
the Belgian Outcome of Burn Injury (BOBI),
the Acute Physiology And Chronic Health
Evaluation II (APACHE II)7 and the Boston
score.6

Intensive care scores such as the National
Early Warning Score (NEWS),10 the Sequential
Organ Failure Assessment (SOFA)11 and the
Simplified Acute Physiology Score III (SAPS
III)12 are other more general prediction models
frequently used at our burn centre.

Artificial intelligence (AI) and its sub-branch
machine learning (ML) are rapidly emerging
areas of research in medicine.13 A large number
of ML models have been evaluated for predictive
purposes, for example in cancer diagnostics,14–18

radiology19,20 and pathology.21 In contrast to
static mathematical formulas, ML does not
assume prior relationships but uses input data
to ‘learn’ from previous data with known out-
comes and then tests on new cases with outcomes
removed. The likelihood of correctly predicted
outcomes will determine the accuracy of the
model.22

Types of ML models are many and each
has different builds to optimise performance
of the algorithm. In brief, visual representation
of these mathematical algorithms can
sometimes be described as decision trees or
networks similar to neuronal matrices.
Examples of models are random forest, decision
tree, logistic regression and artificial neural
networks.

ML has previously been studied in burn inten-
sive care for the prediction of mortality and
length of hospital stay (LOS) using intensive
care unit (ICU) input data.23–28 Several studies
have predicted mortality using different ML algo-
rithms in comparison with outcomemortality pre-
senting results in area under the curve (AUC) of
receiver operating characteristic (ROC) curves.
For example, Stylianou et al. predicted mortality
at an accuracy of 0.945 for random forest, 0.967
for Support-vector machine, 0.974 for artificial
neural network, 0.971 for logistic regression and
0.97 for naive Bayes classifier.25 Patil et al.
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predicted mortality at 0.978 for naive Bayes classi-
fier, 0.961 for random forest, 0.961 for support-
vector machine and 0.949 for back propagation.26

To the best of our knowledge, no previous
publication has directly compared a set of differ-
ent ML models with the commonly used Baux
score and revised Baux score. Therefore, the
aim of the present study was to evaluate a series
of ML models to assess the level of accuracy that
can be reached in outcome prediction for burn
injuries, compared with two common prediction

algorithms. This was a proof-of-concept study to
explore different ML models for mortality predic-
tion of intensive care burn patients and compare
them to Baux score and revised Baux score.

Methods

Summary

Clinical and laboratory data, risk scores and mor-
tality outcomes were gathered from each patient

Figure 1. Flow chart of the data selection, modelling and evaluation of results.
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at admission. Selections of predictive variables
were performed, and predictions were made
through chosen ML algorithms compared to
Baux score and revised Baux score. A summary
of methods is depicted in Figure 1.

Setting

Research was carried out at the Burn Centre in
Uppsala University Hospital, one of two national
burn centres in Sweden.

Ethics review

The study is non-interventional and was approved by
the local ethics review board in Uppsala, Sweden
(Etikprövningsnämnden Uppsala, Dnr 2016/279).
The procedure for consent was in line with recom-
mendations by the board (International Conference
on Harmonisation – Good Clinical Practice).

All patients with included data gave permis-
sion through an informed consent form sent by
regular mail and returned a signed copy. If the
patient was deceased, the informed consent
form was sent to the patient’s closest relative.
The patient or relative was encouraged to
contact the study investigators with additional
questions and some patients or relatives had a
phone call with a study investigator before
giving written approval.

Data gathering and selection

Only data on the day of the patient’s admission
were collected through the hospital’s electronic
health records (EHR) systems. Variables were
divided into clinical data, laboratory data, com-
pound risk scores, comparative risk scores (Baux
and revised Baux score) and the outcome vari-
able (mortality). The following EHR systems
were accessed: Cosmic version R8.2.02 (Cambio
Healthcare Systems AB, Stockholm, Sweden) and
PASIVA version 4.3 (Otimo Data AB, Kalmar,
Sweden), which covered patients admitted to the
burn centre between 2002 and 2019. A non-
randomised convenience sampling was exercised,
which meant that patients who had sufficient data
and provided informed consent first were included.
No effort was made to assure that the cases were
evenly distributed between groups regarding con-
founding factors, such as age or TBSA among
others. Oversampling of deceased cases, with a
target set at 30% of total data, was performed
since most participants survived their injuries.

Variables with insufficient data (>5% of total
data missing) were excluded. The outcome vari-
able ‘deceased’ was defined as a patient who
had died during the hospital stay at the burn
centre or at the referring hospital within 10 days
after return transfer, when the primary reason
for admission had been a burn.

Risk scores were calculated using PASIVA inter-
nal algorithms. Separate recalculations were made
on SAPS III scores using SAPS 3 research group cal-
culation sheets to confirm validity.29

Table 1. Initial variables gathered at patient admission.

Clinical
Heart rate
(beats/min) Risk scores

Age (years) TBSA total (%) SOFA*

Sex (Male/
Female)†

TBSA superficial
dermal (%)

Charlson
Co-morbidity
Index*

BMI (kg/m2) TBSA mid
dermal/
indeterminate
(%)

SAPS III

MAP ( mmHg) TBSA deep
dermal (%)

SAPS III EMR
(%)‡

RLS TBSA full
thickness (%)

Comparative
risk scores

Temperature
(°C)*

Laboratorial Baux score

PaO2/FiO2 (P/F
ratio)*

B-thrombocyte
(10^9/L)

Revised Baux
score

Diuresis (mL/
day)*

S/P-bilirubin
(µmol/L)

Outcome
variables

Ventilator
(Yes/No)

S/P-creatinine
(µmol/L)

Mortality
during
admission
(Yes/No)

Dialysis (Yes/
No)*

B-leukocytes
(10^9/L)

Inhalation
injury (Yes/
No)

P-CRP (mg/L)‡

Respiratory
rate
(breaths/
min)*

B-pH*

*Excluded variable due to missing data.
†Excluded variable due to low weight/correlation.
‡Excluded variable due to similarities to an included variable.
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Data preparation and variable filtering

Patients were pseudonymised and assigned a
random study number for further analysis.
Predictive variables were excluded based on the

following criteria: missing data; variables
deemed to have low impact on outcome; and vari-
ables that were similar to another variable that
was already included. The latter two criteria
were judged by two burn experts based on clinical
experience.

Software for calculations

Calculations were made using freeware Rstudio
version 1.2.5033 and R data Miner Rattle version
5.3.0 (both Free Software Foundation, Inc.,
Boston, MA, USA). Scripts were prepared using
R-packages Caret,30 Mleval31 and pROC.32

Modelling, evaluation and comparison

ML algorithms for outcome prediction were
selected based on their ability to accommodate
multiple categorical and numerical input vari-
ables and produce a classification as output.
The following algorithms were selected: decision
tree; extreme boosting; random forest; support-
vector machine (SVM); and a generalised linear
regression model (GLM).

Leave-one-out cross-validation was used for
training and testing the algorithms. Results were
plotted as ROC curves, and AUC and confidence
interval (CI) were calculated.

For Baux score and revised Baux score accur-
acy calculations, a simple regression model in
relation to mortality outcome on the same
dataset were used. Similar to the ML algorithms,
CI was calculated through leave-one-out cross-
validation and results were plotted as ROC
curves with AUC values. Comparison between
AUC for ROC curves was done using the
DeLong test and the P values reported were
two-tailed.33

Secondary variable selection

After initial modelling and AUC calculations on
selected variables, secondary variable selections
were conducted to examine which variable, or
group of variables when excluded, would impact
the AUC of the models. This selection was per-
formed based on the clinical experience of two
burn experts.

Results

Data inclusion

Data from 92 patients (25 deceased) were gath-
ered from the hospital’s EHR at the time of

Table 2. Variables included in primary data for prediction
models.

Input variables

1. B-thrombocyte 238.5 ± 90.5

2. S/P-bilirubin 17.1 ± 13.3

3. S/P-creatinine 83.8 ± 29.6

4. B-leukocytes 15.2 ± 6.7

5. MAP (mmHg) 71.8 ± 20.9

6. RLS 1.5 ± 1.2

7. Heart rate (beats/min) 88.9 ± 21.2

8. TBSA total (%) 25.4 ± 20.1

9. TBSA superficial dermal (%) 3.6 ± 6.2

10. TBSA mid dermal/ indeterminate (%) 7.8 ± 14.7

11. TBSA deep dermal (%) 5.9 ± 12.8

12. TBSA full thickness (%) 8.0 ± 16.0

13. Age (years) 62.3 ± 17.3

14. BMI (kg/m2) 26.9 ± 5.4

15. SAPS III 49.8 ± 11.2

16. Ventilator

Yes 68

No 24

17. Inhalation injury

Yes 37

No 55

Comparative risk scores

Baux score 88 ± 25

Revised Baux score 95 ± 27

Outcome variable

Deceased

Yes 25

No 67

Values are given as n or mean ± SD.
BMI, body mass index; CRP, C-reactive protein; MAP, mean arterial
pressure; RLS, reaction level scale; TBSA, total body surface area.
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admission. Initially, multiple clinical, laboratory
and compound risk score factors were consid-
ered. Due to lack of data (>5% missing), eight
variables were excluded. Sex was considered to
have a low correlation with outcome and was
therefore excluded. Two variables were excluded
due to similarities with included variables
(Table 1).

After initial selection, 17 input variables
(Table 2), the comparative variables (Baux
score and revised Baux score) and the outcome
variable (mortality) were included in the
primary predictive calculations.

Primary predictions

AUC after leave-one-out cross-validation for the
decision tree model, the extreme boosting
model, the random forest model, the SVM
model and the GLM were 0.83 (95% CI = 0.72–
0.94) 0.92 (95% CI = 0.84–1.0), 0.92 (95% CI =
0.84–1.0), 0.92 (95% CI = 0.84–1.0) and 0.84
(95% CI = 0.74–0.94), respectively (Figure 2).

Comparison of model performance

AUC results for Baux score and revised Baux
score were 0.85 (95% CI = 0.75–0.95) and 0.84
(95% CI = 0.74–0.94), respectively.

P values, comparing ML models AUC with
Baux score and revised Baux score, are shown
in Table 3. There were no statistically significant
differences observed (P < 0.05). Results for Baux
score were the following: decision tree model (P
= 0.55); extreme boosting model (P = 0.50);
random forest model (P = 0.21); SVM model (P
= 0.24); and GLM (P = 0.58). Results for the
revised Baux score were as follow: decision tree
model (P = 0.61); extreme boosting model (P =
0.33); random forest model (P = 0.10); SVM
model (P = 0.14); and GLM (P = 0.70) (Figure 3).

Prediction accuracy after secondary variable
selection

AUC results of the assessedML algorithms after sec-
ondary variable selection are presented in Table 4.
Additional combinations examined are presented

Figure 2. AUC after modelling and leave-one-out cross-validation: decision tree (red), random forest (blue), extreme boosting
(grey), SVM (yellow), GLM (orange). Values in brackets are 95% confidence intervals. AUC, area under the curve; GLM, generalised
linear regression model; SVM, support-vector machine.
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in Supplementary Material 1. Exclusion of SAPS III
alone as well as in combination with extent of burn
and age decreased the AUC. Exclusion of labora-
tory and clinical variables, not including extent of
burn and age, showed minimal or no change in
AUC. A flow chart of results is described in
Supplementary Material 2.

Discussion

Interpretation of results

This proof-of-concept study was conducted to
assess a series of five ML algorithms in the predic-
tion of short-term mortality due to a burn injury.
Our exploratory results indicate that all ML algo-
rithms and Baux scores through AUC-ROC curve
analysis were sufficient in predicting mortality on
the same dataset. When directly comparing the
ML models with Baux score and revised Baux
score, no statistically significant differences in
performance were observed.

Revised Baux score has shown to be advanta-
geous compared to Baux score in previous
studies5,8,34 but no difference between the
scores were observed in our study. Since the
study was not designed to evaluate Baux scores,
conclusions concerning the superiority of
revised Baux score could not be drawn.

Breakdown of secondary variable selection
showed that exclusion of laboratory data and clin-
ical data, not related to burn extent and age, did
not cause important changes in AUC. Prognostic
laboratory markers for burn mortality have been
studied,35 but no trends were observed in our
study. Exclusion of SAPS III resulted in a
reduced AUC. It is most likely that age and
co-morbidities, which are included in SAPS III,

have a high impact on mortality. Exclusion of
age, extent of burn, and SAPS III presented
even lower AUC. This is partially in line with vari-
ables that are included in the Baux score, which
are deemed to be important predictive variables.
However, results need to be interpreted with
caution due to the risk of selection bias of vari-
ables. Therefore, further comparisons with Baux
scores were deemed to be unwarranted.

Limitations

Previous studies have shown that thousands of cases
may be needed formachine learning approaches.36–
38 Therefore, a larger sample size may benefit the
training of ML algorithms in this study. Hence, the
results presented in this paper could have been an
effect of overfitting of data or chance and not gener-
alisable to external, independent data. Therefore,
the results need to be interpreted with caution.
However, since all ML algorithms and Baux scores
used the same dataset, a comparison between the

Table 3. P values comparing AUC results of ML models with
Baux score and revised Baux score.

Baux
score

Revised Baux
score

Decision tree model 0.55 0.61

Extreme boosting
model

0.50 0.32

Random forest
model

0.21 0.10

SVM model 0.24 0.14

GLM 0.58 0.70

GLM, generalised linear regression model; SVM, support-vector
machine.

Table 4. Prediction accuracy after secondary variable
selection.

Variable(s)
excluded ML algorithm AUC

SAPS III Decision tree 0.78 (0.66–0.90)

Extreme boost 0.83 (0.72–0.94)

Random forest 0.87 (0.78–0.96)

SVM 0.84 (0.74–0.94)

GLM 0.76 (0.64–0.88)

Laboratory and
clinical, not
including
burn extent
and age (b)

Decision tree 0.83 (0.72–0.94)

Extreme boost 0.92 (0.84–1)

Random forest 0.92 (0.84–1)

SVM 0.97 (0.92–1)

GLM 0.89 (0.80–0.98)

Burn extent,
SAPS III, age
(c)

Decision tree 0.66 (0.53–0.79)

Extreme boost 0.79 (0.68–0.90)

Random forest 0.78 (0.66–0.90)

SVM 0.78 (0.66–0.90)

GLM 0.74 (0.62–0.86)

Values in parentheses are 95% CI.
AUC, area under the receiver operating characteristic curve; CI,
confidence interval; GLM, generalised linear regression model; ML,
machine learning; SVM, support-vector machine.
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traditional scores and ML models for a
proof-of-concept study was deemed achievable.

Burn cases were selected based on conveni-
ence sampling that is described in the
‘Methods’ section. Hence no effort was made to
assure even distribution regarding confounding
factors. This approach may have skewed the
type of patients included. Another aspect of the
current study to consider is that an oversampling
of deceased cases was performed. Therefore, the
prediction accuracy of the models on unselected
patients could be lower than the reported figures.

Every ICU has its intrinsic characteristics due
to case mix, guidelines, resources and clinical tradi-
tions that affect outcome. Themethod presented in
this study could be considered an example of a
locally adapted ML model. The model, when
used only locally, may have its advantages39 due to
it being adapted to the conditions at hand.
However, it can be argued that a multicentre trial
would create algorithms that have a lower risk of
overfitting and the algorithm trained can be gener-
alized and be of further use in other burns ICUs
beyond one’s own hospital. Including data from

other burn ICUs can also increase the amount of
data available for training thus improving accuracy.
The prerequisite in a multicentre trial would be
that the ICUs should be similar in characteristics.
If the characteristics are too diverse, you may run
the risk of instead underfitting the data provided
thus lowering accuracy of predictions.

In terms of variable selection, temperature
and respiratory rate were excluded due to a lack
of data, and C-reactive protein was excluded
due to it being similar to leukocyte count as a bio-
marker for inflammation. Since these variables
might be important predictors of sepsis and sub-
sequently mortality rate,40,41 it can be speculated
that the inclusion of these variables might have
further optimised the accuracy of the ML
models. In addition, diuresis and Charlson
Co-morbidity Index, which can be necessary for
clinical mortality prediction, were excluded due
to a lack of data.

Variable selection is an intricate balance,
where the inclusion of all clinically relevant vari-
ables may increase prediction accuracy.
However, too many variables could cause

Figure 3. Area under the curve (AUC) after modelling for Baux score and revised Baux score. Values in brackets are 95%
confidence intervals.
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overfitting, thus training the algorithms only to be
accurate for the specific data gathered.
Furthermore, variables are often causally related
in clinical practice, and overlapping variables
could create redundancies, thus slowing down
algorithm performance.42–44

In this study, we considered the balance
described above during variable inclusion.
Nonetheless, practical limitations during data
gathering may have impacted the results.
However, since the ML algorithms and Baux
scores all used the same variables for modelling,
the results from the comparison between ML
models and traditional scores may still add value.

Conclusion

A proof-of-concept study on the prediction of
mortality in burn intensive care patients using
ML algorithms was on par with the Baux score
and the revised Baux score. The study showed
initial feasibility of the methods but, due to
several limitations, need to be interpreted with
caution. Further studies will require larger
sample sizes as well as in-depth analyses of vari-
able inclusion and exclusion. It also might be
crucial to include external validation on indepen-
dent data, prospective testing and evaluation of
the models in real-world clinical decision making.
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