104 research outputs found

    It’s the Combination: Scientific Data Review of the First Corn Silage to Bring Together Fiber and Starch Digestibility

    Full text link
    This information was presented at the 2017 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources.A recent study compared a newly developed brown midrib 3 corn silage with floury endosperm to a conventional corn silage and a brown midrib 3 corn silage for high-producing Holstein cows. The combination of greater rumen fiber and starch fermentability of the new hybrid resulted in greater efficiency of solids-corrected milk production and milk nitrogen efficiency compared with the brown midrib and conventional hybrids

    Continental weathering and recovery from ocean nutrient stress during the Early Triassic Biotic Crisis

    Get PDF
    Following the latest Permian extinction ∼252 million years ago, normal marine and terrestrial ecosystems did not recover for another 5-9 million years. The driver(s) for the Early Triassic biotic crisis, marked by high atmospheric CO2 concentration, extreme ocean warming, and marine anoxia, remains unclear. Here we constrain the timing of authigenic K-bearing mineral formation extracted from supergene weathering profiles of NW-Pangea by Argon geochronology, to demonstrate that an accelerated hydrological cycle causing intense chemical alteration of the continents occurred between ∼254 and 248 Ma, and continued throughout the Triassic period. We show that enhanced ocean nutrient supply from this intense continental weathering did not trigger increased ocean productivity during the Early Triassic biotic crisis, due to strong thermal ocean stratification off NW Pangea. Nitrogen isotope constraints suggest, instead, that full recovery from ocean nutrient stress, despite some brief amelioration ∼1.5 million years after the latest Permian extinction, did not commence until climate cooling revitalized the global upwelling systems and ocean mixing ∼10 million years after the mass extinction

    Ice surface changes during recent glacial cycles along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica

    Get PDF
    Reconstructing past ice-sheet surface changes is key to testing and improving ice-sheet models. Data constraining the past behaviour of the East Antarctic Ice Sheet are sparse, limiting our understanding of its response to past, present and future climate change. Here, we report the first cosmogenic multi-nuclide (10Be, 26Al, 36Cl) data from bedrock and erratics on nunataks along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica. Spanning elevations between 741 and 2394 m above sea level, the samples have apparent exposure ages between 2 ka and 5 Ma. The highest-elevation bedrock sample indicates (near-) continuous minimum exposure since the Pliocene, with a low apparent erosion rate of 0.15 ± 0.03 m Ma−1, which is similar to results from eastern Dronning Maud Land. In contrast to studies in eastern Dronning Maud Land, however, our data show clear indications of a thicker-than-present ice sheet within the last glacial cycle, with a thinning of ∼35–120 m during the Holocene (∼2–11 ka). Difficulties in separating suitable amounts of quartz from the often quartz-poor rock-types in the area, and cosmogenic nuclides inherited from exposure prior to the last deglaciation, prevented robust thinning estimates from elevational profiles. Nevertheless, the results clearly demonstrate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle, a constraint that should be considered in future ice-sheet model simulations

    Tactile massage and hypnosis as a health promotion for nurses in emergency care-a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study explores nursing personnel's experiences and perceptions of receiving tactile massage and hypnosis during a personnel health promotion project. Nursing in a short term emergency ward environment can be emotionally and physically exhausting due to the stressful work environment and the high dependency patient care. A health promotion project integrating tactile massage and hypnosis with conventional physical activities was therefore introduced for nursing personnel working in this setting at a large university hospital in Sweden.</p> <p>Methods</p> <p>Four semi-structured focus group discussions were conducted with volunteer nursing personnel participants after the health promotion project had been completed. There were 16 participants in the focus groups and there were 57 in the health promotion intervention. The discussions were transcribed verbatim and analysed with qualitative content analysis.</p> <p>Results</p> <p>The findings indicated that tactile massage and hypnosis may contribute to reduced levels of stress and pain and increase work ability for some nursing personnel. The sense of well-being obtained in relation to health promotion intervention with tactile massage and hypnosis seemed to have positive implications for both work and leisure. Self-awareness, contentment and self-control may be contributing factors related to engaging in tactile massage and hypnosis that might help nursing personnel understand their patients and colleagues and helped them deal with difficult situations that occurred during their working hours.</p> <p>Conclusion</p> <p>The findings indicate that the integration of tactile massage and hypnosis in personnel health promotion may be valuable stress management options in addition to conventional physical activities.</p

    Physiological responses to low-force work and psychosocial stress in women with chronic trapezius myalgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repetitive and stressful work tasks have been linked to the development of pain in the trapezius muscle, although the underlying mechanisms still remain unclear. In earlier studies, it has been hypothesized that chronic muscle pain conditions are associated with imbalance in the autonomic nervous system, predominantly expressed as an increased sympathetic activity. This study investigates whether women with chronic trapezius myalgia show higher muscle activity and increased sympathetic tone at baseline and during repetitive low-force work and psychosocial stress, compared with pain-free controls.</p> <p>Methods</p> <p>Eighteen women with chronic trapezius myalgia (MYA) and 30 healthy female controls (CON) were studied during baseline rest, 100 min of repetitive low-force work, 20 min of psychosocial stress (Trier Social Stress Test, TSST), and 80 min recovery. The subjects rated their pain intensity, stress and energy level every 20 min throughout the experiment. Muscle activity was measured by surface electromyography in the trapezius muscle (EMGtrap) and deltoid muscle (EMGdelt). Autonomic reactivity was measured through heart rate (HR), skin conductance (SCL), blood pressure (MAP) and respiration rate (Resp).</p> <p>Results</p> <p>At baseline, EMGtrap, stress ratings, and HR were higher in MYA than in CON. Energy ratings, EMGdelt, SCL, MAP and Resp were, however, similar in the two groups. Significant main group effects were found for pain intensity, stress ratings and EMGtrap. Deltoid muscle activity and autonomic responses were almost identical in MYA and CON during work, stress and recovery. In MYA only, pain intensity and stress ratings increased towards the end of the repetitive work.</p> <p>Conclusion</p> <p>We found increased muscle activity during uninstructed rest in the painful muscle of a group of women with trapezius myalgia. The present study could not confirm the hypothesis that chronic trapezius myalgia is associated with increased sympathetic activity. The suggestion of autonomic imbalance in patients with chronic local or regional musculoskeletal pain needs to be further investigated.</p

    A thicker Antarctic ice stream during the mid-Pliocene warm period

    Get PDF
    This work is supported by Stockholm University (APS), Norwegian Polar Institute/NARE under Grant “MAGIC-DML” (OF), the US National Science Foundation under Grant No. OPP-1542930 (NAL and JMH), Swedish Research Council under Grant No. 2016-04422 (JMH and APS), and the German Research Foundation Priority Programme 1158 “Antarctic Research” under Grant No. 365737614 (IR and Matthias Prange). R.S.J. is supported by the Australian Research Council under grants DE210101923 and SR200100005 (Securing Antarctica’s Environmental Future). The computations and data handling were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC), partially funded by the Swedish Research Council through grant agreement No. 2018-05973.Ice streams regulate most ice mass loss in Antarctica. Determining ice stream response to warmer conditions during the Pliocene could provide insights into their future behaviour, but this is hindered by a poor representation of subglacial topography in ice-sheet models. We address this limitation using a high-resolution model for Dronning Maud Land (East Antarctica). We show that contrary to dynamic thinning of the region’s ice streams following ice-shelf collapse, the largest ice stream, Jutulstraumen, thickens by 700 m despite lying on a retrograde bed slope. We attribute this counterintuitive thickening to a shallower Pliocene subglacial topography and inherent high lateral stresses at its flux gate. These conditions constrict ice drainage and, combined with increased snowfall, allow ice accumulation upstream. Similar stress balances and increased precipitation projections occur across 27% of present-day East Antarctica, and understanding how lateral stresses regulate ice-stream discharge is necessary for accurately assessing Antarctica’s future sea-level rise contribution.Publisher PDFPeer reviewe
    corecore