6 research outputs found

    Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections

    Get PDF
    The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracellular retention. While nanocarriers have received tremendous attention for antibiotic delivery against persistent pathogens, they suffer daunting challenges such as low drug loading, poor retention and untimely release of hydrophilic cargos. Here, a hybrid system (Van_DNL) is fabricated wherein nucleic acid nanogels are caged within a liposomal vesicle for antibiotic delivery. The central principle of this approach relies on exploiting non-covalent electrostatic interactions between cationic cargos and polyanionic DNA to immobilize antibiotics and enable precise temporal release against intracellular S. aureus. In vitro characterization of Van_DNL revealed a stable homogenous formulation with circular morphology and enhanced vancomycin loading efficiency. The hybrid system significantly sustained the release of vancomycin over 24 h compared to liposomal or nanogel controls. Under enzymatic conditions relevant to S. aureus infections, lipase triggered release of vancomycin was observed from the hybrid. While using Van_DNL to treat S. aureus infected macrophages, a dose dependent reduction in intracellular bacterial load was observed over 24 h and exposure to Van_DNL for 48 h caused negligible cellular toxicity. Pre-treatment of macrophages with the antimicrobial hybrid resulted in a strong anti-inflammatory activity in synergy with vancomycin following endotoxin stimulation. Conceptually, these findings highlight these hybrids as a unique and universal platform for synergistic antimicrobial and anti-inflammatory therapy against persistent infections

    Dominance Between Plasmids Determines the Extent of Biofilm Formation

    Get PDF
    Bacterial biofilms have an impact in medical and industrial environments because they often confer protection to bacteria against harmful agents, and constitute a source from which microorganisms can disperse. Conjugative plasmids can enhance bacterial ability to form biofilms because conjugative pili act as adhesion factors. However, plasmids may interact with each other, either facilitating or inhibiting plasmid transfer. Accordingly, we asked whether effects on plasmid transfer also impacts biofilm formation. We measured biofilm formation of Escherichia coli cells harboring two plasmid types, or when the two plasmids were present in the same population but carried in different cells. Using eleven natural isolated conjugative plasmids, we confirmed that some indeed promote biofilm formation and, importantly, that this ability is correlated with conjugative efficiency. Further we studied the effect of plasmid pairs on biofilm formation. We observed increased biofilm formation in approximately half of the combinations when both plasmids inhabited the same cell or when the plasmids were carried in different cells. Moreover, in approximately half of the combinations, independent of the co-inhabitation conditions, one of the plasmids alone determined the extent of biofilm formation - thus having a dominant effect over the other plasmid. The molecular mechanisms responsible for these interactions were not evaluated here and future research is required to elucidate them.info:eu-repo/semantics/publishedVersio

    Synthesis and Antimicrobial Activity of Short Analogues of the Marine Antimicrobial Peptide Turgencin A: Effects of SAR Optimizations, Cys-Cys Cyclization and Lipopeptide Modifications

    Get PDF
    We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8 ), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells

    Identification of surface proteins in a clinical Staphylococcus haemolyticus isolate by bacterial surface shaving

    No full text
    Background - The skin commensal Staphylococcus haemolyticus is an emerging nosocomial pathogen. Despite its clinical relevance, published information about S. haemolyticus virulence factors is scarce. In this study, the adhesive and biofilm forming properties of ten clinical and ten commensal S. haemolyticus strains were examined using standard adhesion and biofilm assays. One of the clinical strains was used to identify expressed surface proteins using bacterial surface shaving. Protein abundance was examined by a comparative analysis between bacterial protein expression after human keratinocyte (HaCaT) colonization and growth in cell culture media supplemented with serum. Relative protein quantification was performed by labeling peptides with tandem mass tags (TMT) prior to Mass Spectrometry analysis. Surface proteins can be used as novel targets for antimicrobial treatment and in diagnostics. Results - Adherence to fibronectin, collagen and plastic was low in all tested strains, but with significantly higher adhesion to fibronectin (p = 0.041) and collagen (p = 0.001) in the commensal strains. There was a trend towards higher degree of biofilm formation in the clinical strains (p = 0.059). By using surface shaving, 325 proteins were detected, of which 65 were classified as surface proteins. Analyses showed that the abundance of nineteen (5.8%) proteins were significantly changed following HaCaT colonization. The bacterial Toll/interleukin-1 like (TIRs) domain containing protein (p = 0.04), the transglycosylase SceD (p = 0.01), and the bifunctional autolysin Atl (p = 0.04) showed a 1.4, 1.6- and 1.5-fold increased abundance. The staphylococcal secretory antigen (SsaA) (p = 0.04) was significantly downregulated (− 1.5 fold change) following HaCaT colonization. Among the 65 surface proteins the elastin binding protein (Ebps), LPXAG and LPXSG domain containing proteins and five LPXTG domain containing proteins were identified; three Sdr-like proteins, the extracellular matrix binding protein Embp and a SasH-like protein. Conclusions - This study has provided novel knowledge about expression of S. haemolyticus surface proteins after direct contact with eukaryotic cells and in media supplemented with serum. We have identified surface proteins and immune evasive proteins previously only functionally described in other staphylococcal species. The identification of expressed proteins after host-microbe interaction offers a tool for the discovery and design of novel targets for antimicrobial treatment

    The chemotherapeutic drug methotrexate selects for antibiotic resistance

    Get PDF
    Background: Understanding drivers of antibiotic resistance evolution is fundamental for designing optimal treatment strategies and interventions to reduce the spread of antibiotic resistance. Various cytotoxic drugs used in cancer chemotherapy have antibacterial properties, but how bacterial populations are affected by these selective pressures is unknown. Here we test the hypothesis that the widely used cytotoxic drug methotrexate affects the evolution and selection of antibiotic resistance. Methods: First, we determined methotrexate susceptibility (IC90) and selective abilities in a collection of Escherichia coli and Klebsiella pneumoniae strains with and without pre-existing trimethoprim resistance determinants. We constructed fluorescently labelled pairs of E. coli MG1655 differing only in trimethoprim resistance determinants and determined the minimum selective concentrations of methotrexate using flowcytometry. We further used an experimental evolution approach to investigate the effects of methotrexate on de novo trimethoprim resistance evolution. Findings: We show that methotrexate can select for acquired trimethoprim resistance determinants located on the chromosome or a plasmid. Additionally, methotrexate co-selects for genetically linked resistance determinants when present together with trimethoprim resistance on a multi-drug resistance plasmid. These selective effects occur at concentrations 40- to >320-fold below the methotrexate minimal inhibitory concentration. Interpretation: Our results strongly suggest a selective role of methotrexate for virtually any antibiotic resistance determinant when present together with trimethoprim resistance on a multi-drug resistance plasmid. The presented results may have significant implications for patient groups strongly depending on effective antibiotic treatment

    Coagulase-negative staphylococci in Southern Brazil: looking toward its high diversity

    Get PDF
    Abstract: INTRODUCTION: Coagulase-negative staphylococci (CoNS) are the most prevalent pathogens in nosocomial infections and may serve as a reservoir of mobile genetic elements such as the staphylococcal cassette chromosome mec (SCCmec) encoding methicillin resistance. Molecular characterization of SCCmec types combined with advanced molecular typing techniques may provide essential information for understanding the evolution and epidemiology of CoNS infections. We therefore aimed to investigate the SCCmec distribution, multidrug-resistance (MDR), and biofilm formation in CoNS blood culture isolates from a hospital in Southern Brazil. METHODS: We analyzed 136 CoNS blood culture isolates obtained during 2002-2004 from patients admitted to a tertiary care hospital in Brazil. SCCmec types I to V were determined using multiplex PCR. The clonal relationship of Staphylococcus epidermidis was determined using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Molecular epidemiological data were interpreted along with data on biofilm formation, presence of the icaD gene, and MDR. RESULTS: The most prevalent species were S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis harboring mainly SCCmec types II, III, and V. Overall, the presence of multiple SCCmec was associated with non-MDR, except for S. epidermidis. S. epidermidis isolates showed a high prevalence of icaD, but had low phenotypic biofilm formation. PFGE and MLST revealed high genetic diversity in the S. epidermidis population. CONCLUSIONS: Our results suggest a major shift in SCCmec types within a short period and reveal a different behavior of S. epidermidis with regard to the association between the presence of multiple SCCmec types and MDR profile
    corecore