201 research outputs found

    Nomenclature for the chromosomes of the common shrew (Sorex araneus)

    Get PDF
    A G-band composite karyotype has been prepared for the common shrew (Sorex araneus Linnaeus, 1758). This includes multiple cut-outs of each chromosome arm (in different stages of contraction) derived from chromosome spreads prepared by a variety of methods by the different authors. The important features of each chromosome arm are described. The nomenclature for the chromosome arms follows that of Halkka et al. (1974) as clarified by Fredga, Nawrin (1977) and subsequent authors, i.e. italicised letters of the alphabet are used with a as the largest chromosome arm. Different authors have used a variety of methods to describe the karyotype of (a) individuals and (b) the pattern of variation within populations. Also, definitions of chromosomal ‘race’ differ. We suggest a standardised scheme for the description of individuals, populations and chromosomal race

    A microsatellite study in the Łęgucki Młyn/Popielno hybrid zone reveals no genetic differentiation between two chromosome races of the common shrew (Sorex araneus)

    Get PDF
    This study investigated a chromosome hybrid zone between two chromosomal races of the common shrew (Sorex araneus). Gene flow and genetic structure of the hybrid zone, located in the northeast of Poland, were studied using seven polymorphic autosomal microsatellite loci (L9, L14, L33, L45, L67, L68, L97) and a Y-linked microsatellite locus (L8Y). Seventy-five animals (46 of the Łęgucki Młyn race and 29 of the Popielno race) from nine different localities were examined and the data were analyzed using hierarchical AMOVA and F-statistic. The studied microsatellite loci and races (divided into nine geographical populations) were characterized by observed heterozygosity (HO), expected heterozygosities within (HS), and between (HT) populations, inbreeding coefficient (FIS), fixation index (FST), and average allelic richness (A). We found that genetic structuring within and between the two chromosome races were weak and non-significant. This finding and unconstrained gene flow between the races indicates a high level of migration within the Łęgucki Młyn/Popielno hybrid zone, suggesting that evolutionarily important genetic structuring does not occur in interracial zones where races which are not genetically distinct come into contact

    Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)

    Get PDF
    Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems

    Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole microtus agrestis

    Get PDF
    Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole (Microtus agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south, however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate estimated here and those obtained by sampling heterochronous (ancient) DNA (including that of a congeneric species) suggest that there is little disparity between the measured genetic divergence and the population divergence that is implicit in our land-bridge calibration

    The Interface Region Imaging Spectrograph (IRIS)

    Full text link

    Myoprocta acouchy (Red acouchy)

    No full text

    Studies of the chromosomes in american obese-hyperglycaemic mice.

    No full text

    Dasyprocta aguti (Orange-rumped agouti)

    No full text

    Myocastor coypus (Coypu)

    No full text
    corecore