2,313 research outputs found
Recommended from our members
The long and winding road: Routine creation and replication in multi-site organizations
Prior research on organizational routines in the ‘capabilities’ literature has either studied how new routines are created during an exploratory process of variation and selection or how existing routines are replicated during a phase of exploitation. Few studies have analyzed the life cycle of new routine creation and replication as an integrated process. In an in-depth case study of England’s Highways Agency, this paper shows that the creation and replication of a new routine across multiple sites involves four sequential steps: envisioning, experimenting, entrenching and enacting. We contribute to the capabilities research in two ways: first, by showing how different organizational levels, capabilities and logics (cognitive and behavioural) shape the development of new routines; and second, by identifying how distinct evolutionary cycles of variation and selective retention occur during each step in the process. In contrast with prior research on replication as an exact copy of a template or existing routine, our study focuses on the replication of an entirely new routine (based on novel principles) that is adapted to fit local operational conditions during its large-scale replication across multiple sites. We draw upon insights from adjacent ‘practice research’ and suggest how capabilities and practice studies may complement each other in future research on the evolution of routines
Controlled Contact to a C60 Molecule
The conductance of C60 on Cu(100) is investigated with a low-temperature
scanning tunneling microscope. At the transition from tunneling to the contact
regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises
rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is
observed upon further decreasing the distance between the instrument's tip and
the surface. Ab-initio calculations within density functional theory and
non-equilibrium Green's function techniques explain the experimental data in
terms of the conductance of an essentially undeformed C60. From a detailed
analysis of the crossover from tunneling to contact we conclude that the
conductance in this region is strongly affected by structural fluctuations
which modulate the tip-molecule distance.Comment: 4 pages, 3 figure
Engineering Negative Differential Conductance with the Cu(111) Surface State
Low-temperature scanning tunneling microscopy and spectroscopy are employed
to investigate electron tunneling from a C60-terminated tip into a Cu(111)
surface. Tunneling between a C60 orbital and the Shockley surface states of
copper is shown to produce negative differential conductance (NDC) contrary to
conventional expectations. NDC can be tuned through barrier thickness or C60
orientation up to complete extinction. The orientation dependence of NDC is a
result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl
Ion dynamics and acceleration in relativistic shocks
Ab-initio numerical study of collisionless shocks in electron-ion
unmagnetized plasmas is performed with fully relativistic particle in cell
simulations. The main properties of the shock are shown, focusing on the
implications for particle acceleration. Results from previous works with a
distinct numerical framework are recovered, including the shock structure and
the overall acceleration features. Particle tracking is then used to analyze in
detail the particle dynamics and the acceleration process. We observe an energy
growth in time that can be reproduced by a Fermi-like mechanism with a reduced
number of scatterings, in which the time between collisions increases as the
particle gains energy, and the average acceleration efficiency is not ideal.
The in depth analysis of the underlying physics is relevant to understand the
generation of high energy cosmic rays, the impact on the astrophysical shock
dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure
Bayesian Error Estimation in Density Functional Theory
We present a practical scheme for performing error estimates for Density
Functional Theory calculations. The approach which is based on ideas from
Bayesian statistics involves creating an ensemble of exchange-correlation
functionals by comparing with an experimental database of binding energies for
molecules and solids. Fluctuations within the ensemble can then be used to
estimate errors relative to experiment on calculated quantities like binding
energies, bond lengths, and vibrational frequencies. It is demonstrated that
the error bars on energy differences may vary by orders of magnitude for
different systems in good agreement with existing experience.Comment: 5 pages, 3 figure
Plasma-Induced Heating Effects on Platinum Nanoparticle Size during Sputter Deposition Synthesis in Polymer and Ionic Liquid Substrates
Nanoparticle catalyst materials are becoming ever more important in a sustainable future. Specifically, platinum (Pt) nanoparticles have relevance in catalysis, in particular, fuel cell technologies. Sputter deposition into liquid substrates has been shown to produce nanoparticles without the presence of air and other contaminants and the need for precursors. Here, we produce Pt nanoparticles in three imidazolium-based ionic liquids and PEG 600. All Pt nanoparticles are crystalline and around 2 nm in diameter. We show that while temperature has an effect on particle size for Pt, it is not as great as for other materials. Sputtering power, time, and postheat treatment all show slight influence on the particle size, indicating the importance of temperature during sputtering. The temperature of the liquid substrate is measured and reaches over 150 \ub0C during deposition which is found to increase the particle size by less than 20%, which is small compared to the effect of temperature on Au nanoparticles presented in the literature. High temperatures during Pt sputtering are beneficial for increasing Pt nanoparticle size beyond 2 nm. Better temperature control would allow for more control over the particle size in the future
Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability
One of the key open questions in the study of relativistic jets is their
interaction with the environment. Here, we study the initial evolution of both
electron-proton and electron-positron relativistic jets, focusing on their
lateral interaction with the ambient plasma. We trace the generation and
evolution of the toroidal magnetic field generated by both kinetic
Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). This magnetic field
collimates the jet. We show that in electron-proton jet, electrons are
perpendicularly accelerated with jet collimation. The magnetic polarity
switches from the clockwise to anti-clockwise in the middle of jet, as the
instabilities weaken. For the electron-positron jet, we find strong mixture of
electron-positron with the ambient plasma, that results in the creation of a
bow shock. Merger of magnetic field current filaments generate density bumps
which initiate a forward shock. The strong mixing between jet and ambient
particles prevents full development of the jet on the studied scale. Our
results therefore provide a direct evidence for both jet collimation and
particle acceleration in the created bow shock. Differences in the magnetic
field structures generated by electron-proton and electron-positron jets may
contribute to observable differences in the polarized properties of emission by
electrons.Comment: 25 pages, 12 figures, ApJ, accepte
Prenatal exposure to vitamin D from fortified margarine and risk of fractures in late childhood:period and cohort results from 222 000 subjects in the D-tect observational study
Prenatal low vitamin D may have consequences for bone health. By means of a nationwide mandatory vitamin D fortification programme, we examined the risk of fractures among 10–18-year-old children from proximate birth cohorts born around the date of the termination of the programme. For all subjects born in Denmark during 1983–1988, civil registration numbers were linked to the Danish National Patient Registry for incident and recurrent fractures occurring at ages 10–18 years. Multiplicative Poisson models were used to examine the association between birth cohort and fracture rates. The variation in fracture rates across birth cohorts was analysed by fitting an age-cohort model to the data. We addressed the potential modification of the effect of vitamin D availability by season of birth. The risk of fractures was increased among both girls and boys who were born before the vitamin D fortification terminated in 1985 (rate ratio (RR) exposed v. non-exposed girls: 1·15 (95 % CI 1·11, 1·20); RR exposed v. non-exposed boys: 1·11 (95 % CI 1·07, 1·14). However, these associations no longer persisted after including the period effects. There was no interaction between season of birth and vitamin D availability in relation to fracture risk. The study did not provide evidence that prenatal exposure to extra vitamin D from a mandatory fortification programme of 1·25 µg vitamin D/100 g margarine was sufficient to influence the risk of fractures in late childhood, regardless of season of birth. Replication studies are needed
- …