2,313 research outputs found

    Controlled Contact to a C60 Molecule

    Get PDF
    The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instrument's tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Green's function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.Comment: 4 pages, 3 figure

    Engineering Negative Differential Conductance with the Cu(111) Surface State

    Full text link
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl

    Ion dynamics and acceleration in relativistic shocks

    Get PDF
    Ab-initio numerical study of collisionless shocks in electron-ion unmagnetized plasmas is performed with fully relativistic particle in cell simulations. The main properties of the shock are shown, focusing on the implications for particle acceleration. Results from previous works with a distinct numerical framework are recovered, including the shock structure and the overall acceleration features. Particle tracking is then used to analyze in detail the particle dynamics and the acceleration process. We observe an energy growth in time that can be reproduced by a Fermi-like mechanism with a reduced number of scatterings, in which the time between collisions increases as the particle gains energy, and the average acceleration efficiency is not ideal. The in depth analysis of the underlying physics is relevant to understand the generation of high energy cosmic rays, the impact on the astrophysical shock dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure

    Bayesian Error Estimation in Density Functional Theory

    Full text link
    We present a practical scheme for performing error estimates for Density Functional Theory calculations. The approach which is based on ideas from Bayesian statistics involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities like binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude for different systems in good agreement with existing experience.Comment: 5 pages, 3 figure

    Plasma-Induced Heating Effects on Platinum Nanoparticle Size during Sputter Deposition Synthesis in Polymer and Ionic Liquid Substrates

    Get PDF
    Nanoparticle catalyst materials are becoming ever more important in a sustainable future. Specifically, platinum (Pt) nanoparticles have relevance in catalysis, in particular, fuel cell technologies. Sputter deposition into liquid substrates has been shown to produce nanoparticles without the presence of air and other contaminants and the need for precursors. Here, we produce Pt nanoparticles in three imidazolium-based ionic liquids and PEG 600. All Pt nanoparticles are crystalline and around 2 nm in diameter. We show that while temperature has an effect on particle size for Pt, it is not as great as for other materials. Sputtering power, time, and postheat treatment all show slight influence on the particle size, indicating the importance of temperature during sputtering. The temperature of the liquid substrate is measured and reaches over 150 \ub0C during deposition which is found to increase the particle size by less than 20%, which is small compared to the effect of temperature on Au nanoparticles presented in the literature. High temperatures during Pt sputtering are beneficial for increasing Pt nanoparticle size beyond 2 nm. Better temperature control would allow for more control over the particle size in the future

    Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability

    Get PDF
    One of the key open questions in the study of relativistic jets is their interaction with the environment. Here, we study the initial evolution of both electron-proton and electron-positron relativistic jets, focusing on their lateral interaction with the ambient plasma. We trace the generation and evolution of the toroidal magnetic field generated by both kinetic Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). This magnetic field collimates the jet. We show that in electron-proton jet, electrons are perpendicularly accelerated with jet collimation. The magnetic polarity switches from the clockwise to anti-clockwise in the middle of jet, as the instabilities weaken. For the electron-positron jet, we find strong mixture of electron-positron with the ambient plasma, that results in the creation of a bow shock. Merger of magnetic field current filaments generate density bumps which initiate a forward shock. The strong mixing between jet and ambient particles prevents full development of the jet on the studied scale. Our results therefore provide a direct evidence for both jet collimation and particle acceleration in the created bow shock. Differences in the magnetic field structures generated by electron-proton and electron-positron jets may contribute to observable differences in the polarized properties of emission by electrons.Comment: 25 pages, 12 figures, ApJ, accepte

    Prenatal exposure to vitamin D from fortified margarine and risk of fractures in late childhood:period and cohort results from 222 000 subjects in the D-tect observational study

    Get PDF
    Prenatal low vitamin D may have consequences for bone health. By means of a nationwide mandatory vitamin D fortification programme, we examined the risk of fractures among 10–18-year-old children from proximate birth cohorts born around the date of the termination of the programme. For all subjects born in Denmark during 1983–1988, civil registration numbers were linked to the Danish National Patient Registry for incident and recurrent fractures occurring at ages 10–18 years. Multiplicative Poisson models were used to examine the association between birth cohort and fracture rates. The variation in fracture rates across birth cohorts was analysed by fitting an age-cohort model to the data. We addressed the potential modification of the effect of vitamin D availability by season of birth. The risk of fractures was increased among both girls and boys who were born before the vitamin D fortification terminated in 1985 (rate ratio (RR) exposed v. non-exposed girls: 1·15 (95 % CI 1·11, 1·20); RR exposed v. non-exposed boys: 1·11 (95 % CI 1·07, 1·14). However, these associations no longer persisted after including the period effects. There was no interaction between season of birth and vitamin D availability in relation to fracture risk. The study did not provide evidence that prenatal exposure to extra vitamin D from a mandatory fortification programme of 1·25 µg vitamin D/100 g margarine was sufficient to influence the risk of fractures in late childhood, regardless of season of birth. Replication studies are needed
    • …
    corecore