136 research outputs found

    Are old running shoes detrimental to your feet? A pedobarographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Footwear characteristics have been implicated in fatigue and foot pain. The recommended time for changing running shoes is every 500 miles. The aim of our study was to assess and compare plantar peak pressures and pressure time integrals in new and old running shoes.</p> <p>Findings</p> <p>This was a prospective study involving 11 healthy female volunteers with no previous foot and ankle problems. New running shoes were provided to the participants. Plantar pressures were measured using the Novel Pedar system while walking with new and participants' personal old running shoes. Plantar pressures were measured in nine areas of the feet. Demographic data, age of old running shoes, Body Mass Index (BMI), peak pressures and pressure-time integral were acquired. The right and left feet were selected at random and assessed separately. Statistical analysis was done using the paired t test to compare measurements between old and new running shoes.</p> <p>The mean peak pressures were higher in new running shoes (330.5 ± 79.6 kiloPascals kPa) when compared to used old running shoes (304 ± 58.1 kPa) (p = 0.01). The pressure-time integral was significantly higher in the new running shoes (110 ± 28.3 kPa s) compared to used old running shoes (100.7 ± 24.0 kPa s) (p = 0.01).</p> <p>Conclusion</p> <p>Plantar pressure measurements in general were higher in new running shoes. This could be due to the lack of flexibility in new running shoes. The risk of injury to the foot and ankle would appear to be higher if running shoes are changed frequently. We recommend breaking into new running shoes slowly using them for mild physical activity.</p

    Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

    Get PDF
    Context: Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. Objective: To evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. Methods: In 210 Israeli Defence Forces (IDF) military conscripts, stress fracture injury was diagnosed (n=43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n=125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson Chi-square (χ2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. Results: The variant allele of P2X7R SNP rs3751143 (Glu496Ala- loss of function) was associated with stress fracture injury, while the variant allele of rs1718119 (Ala348Thr- gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P<0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P<0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P<0.05). Conclusions: The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury

    Kinematic analisys of the knee when climbing up/down stairs in patellofemoral instability

    Get PDF
    OBJECTIVE: To analyze and to identify possible gait adaptations by individuals with objective patellofemoral instability when climbing up/down stairs. METHODS: A control group (group A) composed by nine women with mean age = 25 years (±1.87), height = 1.62 m (±0.05) and weight = 56.20 kg (±7.34), and; nine women with objective patellofemoral instability (group B) with mean age = 24 years (±6.02), height = 1.62 m (±0.06) and weight = 60.33 kg (±10.31) were analyzed. The groups underwent kinematic analysis while climbing up/down stairs, in a previously determined area. Images were obtained by six cameras (Qualysis) and data analysis utilized the Q gait software program. RESULTS: Group B presented, in the support phase, less knee flexion when climbing up (p = 0.0268), and lower speed (p = 0.0076/ p =0.0243) and pace (p = 0.0027/ p = 0.0165) when climbing up and down stairs, respectively. CONCLUSION: It is suggested that group B used functional changes such as reduced knee flexion, speed and pace when climbing up and down stairs.OBJETIVO: Analisar e identificar possíveis adaptações da marcha em indivíduos com diagnóstico de instabilidade patelofemoral objetiva, durante a atividade de subida e descida de escada. MÉTODOS: Foram analisados um grupo controle (grupo A), composto por 9 mulheres com média de idade de 25 anos (±1,87), média de altura de 1,62m (±0,05) e média de peso de 56,20kg (±7,34); e, um grupo de 9 mulheres com instabilidade patelofemoral objetiva (grupo B), média de idade de 24 anos (±6,02), média de altura de 1,62m (±0,06) e média de peso de 60,33kg (±10,31). Os grupos foram submetidos a uma análise cinemática, onde as voluntárias subiram e desceram degraus, em uma área previamente selecionada. As imagens foram obtidas por seis câmeras (Qualysis) e a análise dos dados foi realizada através do programa Q gait. RESULTADOS: O grupo B apresentou, no período de apoio, menor flexão do joelho durante a subida (p=0,0268), além de menores velocidade (p=0,0076/ p=0,0243) e cadência (p=0,0027/ p=0,0165) na subida e na descida, respectivamente. CONCLUSÃO: Sugere-se que o grupo B utilizou adaptações funcionais como redução da flexão do joelho, da velocidade e da cadência, durante a subida e a descida de degraus.UNICAMP FCM Departamento de Ortopedia e TraumatologiaUniversidade Federal de São Paulo (UNIFESP)UNIFESPSciEL

    Hip abduction weakness in elite junior footballers is common but easy to correct quickly: a prospective sports team cohort based study

    Get PDF
    Background: Hip abduction weakness has never been documented on a population basis as a common finding in a healthy group of athletes and would not normally be found in an elite adolescent athlete. This study aimed to show that hip abduction weakness not only occurs in this group but also is common and easy to correct with an unsupervised home based program. Methods: A prospective sports team cohort based study was performed with thirty elite adolescent under-17 Australian Rules Footballers in the Australian Institute of Sport/Australian Football League Under-17 training academy. The players had their hip abduction performance assessed and were then instructed in a hip abduction muscle training exercise. This was performed on a daily basis for two months and then they were reassessed.Results: The results showed 14 of 28 athletes who completed the protocol had marked weakness or a side-to-side difference of more than 25% at baseline. Two months later ten players recorded an improvement of ≥ 80% in their recorded scores. The mean muscle performance on the right side improved from 151 Newton (N) to 202 N (p<0.001) while on the left, the recorded results improved from 158 N to 223 N (p<0.001). Conclusions: The baseline values show widespread profound deficiencies in hip abduction performance not previously reported. Very large performance increases can be achieved, unsupervised, in a short period of time to potentially allow large clinically significant gains. This assessment should be an integral part of preparticipation screening and assessed in those with lower limb injuries. This particular exercise should be used clinically and more research is needed to determine its injury prevention and performance enhancement implications

    Bone mineral density in vocational and professional ballet dancers

    Get PDF
    Summary: According to existing literature, bone health in ballet dancers is controversial. We have verified that, compared to controls, young female and male vocational ballet dancers have lower bone mineral density (BMD) at both impact and non-impact sites, whereas female professional ballet dancers have lower BMD only at non-impact sites. Introduction: The aims of this study were to (a) assess bone mineral density (BMD) in vocational (VBD) and professional (PBD) ballet dancers and (b) investigate its association with body mass (BM), fat mass (FM), lean mass (LM), maturation and menarche. Methods: The total of 152 VBD (13 ± 2.3 years; 112 girls, 40 boys) and 96 controls (14 ± 2.1 years; 56 girls, 40 boys) and 184 PBD (28 ± 8.5 years; 129 females, 55 males) and 160 controls (27 ± 9.5 years; 110 female, 50 males) were assessed at the lumbar spine (LS), femoral neck (FN), forearm and total body by dual-energy X-ray absorptiometry. Maturation and menarche were assessed via questionnaires. Results: VBD revealed lower unadjusted BMD at all anatomical sites compared to controls (p < 0.001); following adjustments for Tanner stage and gynaecological age, female VBD showed similar BMD values at impact sites. However, no factors were found to explain the lower adjusted BMD values in VBD (female and male) at the forearm (non-impact site), nor for the lower adjusted BMD values in male VBD at the FN. Compared to controls, female PBD showed higher unadjusted and adjusted BMD for potential associated factors at the FN (impact site) (p < 0.001) and lower adjusted at the forearm (p < 0.001). Male PBD did not reveal lower BMD than controls at any site. Conclusions: both females and males VBD have lower BMD at impact and non-impact sites compared to control, whereas this is only the case at non-impact site in female PBD. Maturation seems to explain the lower BMD at impact sites in female VBD

    Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors

    Get PDF
    Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS
    corecore