16 research outputs found

    Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle

    Get PDF
    Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Características funcionais de folhas de sol e sombra de espécies arbóreas em uma mata de galeria no Distrito Federal, Brasil Leaf functional traits in sun and shade leaves of gallery forest trees in Distrito Federal, Brazil

    Get PDF
    As matas de galeria são formações florestais que ocupam cerca de 10% da área dos cerrados e representam 1/3 da diversidade de espécies arbóreas ali encontradas. Estudos recentes têm demonstrado a importância dessas florestas em regiões do Brasil central, mas pouco se sabe sobre a fisiologia e plasticidade de espécies de mata de galeria em relação a variantes ambientais, como a irradiação solar. No presente estudo, foram comparados in situ aspectos fisiológicos e nutricionais de folhas de sol e sombra, em dez espécies arbóreas comumente encontradas em matas de galeria. Folhas de sol apresentaram maiores valores de assimilação de CO2 em base de área (Aarea), condutância estomática (gs), rendimento quântico do fotossistema II (&#934;FSII) e uma maior fração de centros de reação abertos (qL), enquanto folhas de sombra apresentaram uma maior área foliar específica. Diferenças não foram encontradas para potencial hídrico foliar, assimilação de CO2 em base de massa e para a concentração foliar de macronutrientes. Dos atributos foliares analisados, a abertura estomática e o rendimento quântico do fotossistema II foram os principais fatores atuantes na Aarea em folhas de sol, enquanto em folhas de sombra apenas &#934;FSII foi influente. As diferenças encontradas demonstram que, assim como em outras formações florestais, em mata de galeria as espécies arbóreas possuem a capacidade de se aclimatarem às condições contrastantes de sombreamento que ocorrem neste tipo de ambiente.<br>Gallery forest is a forest formation that covers about 10% of the cerrado biome and represents about 1/3 of cerrado tree diversity in Brazil. Recent studies demonstrate the importance of gallery forest in central regions of Brazil, but little is known about the physiology and plasticity of gallery forest species in relation to environmental variability, particularly in terms of light availability. In this study we compared in situ physiological and nutritional aspects of shade and sun leaves, in ten tree species commonly found in gallery forests. Relative to shade leaves, sun leaves had higher values of CO2 assimilation rates on an area basis (Aarea), of stomatal conductance (gs), of quantum yield of Photosystem II (&#934;PSIIL); and a larger fraction of PSII centers in the open state (qL), while shade leaves showed higher specific leaf area. However, shade and sun leaves did not differ in terms of leaf water potential, CO2 assimilation on a mass basis and in leaf concentrations of macronutrients. &#934;PSII and gs were the main factors that influenced Aarea in sun leaves, while only &#934;PSII significantly affected Aarea of shade leaves. The differences found here demonstrate that, like in other forest formations worldwide, gallery forest trees are able to acclimate to contrasting irradiance levels that typically occur in this type of environment
    corecore