689 research outputs found

    Information theoretical quantification of cooperativity in signalling complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-cellular information exchange, propelled by cascades of interacting signalling proteins, is essential for the proper functioning and survival of cells. Now that the interactome of several organisms is being mapped and several structural mechanisms of cooperativity at the molecular level in proteins have been elucidated, the formalization of this fundamental quantity, i.e. information, in these very diverse biological contexts becomes feasible.</p> <p>Results</p> <p>We show here that Shannon's mutual information quantifies information in biological system and more specifically the cooperativity inherent to the assembly of macromolecular complexes. We show how protein complexes can be considered as particular instances of noisy communication channels. Further we show, using a portion of the p27 regulatory pathway, how classical equilibrium thermodynamic quantities such as binding affinities and chemical potentials can be used to quantify information exchange but also to determine engineering properties such as channel noise and channel capacity. As such, this information measure identifies and quantifies those protein concentrations that render the biochemical system most effective in switching between the active and inactive state of the intracellular process.</p> <p>Conclusion</p> <p>The proposed framework provides a new and original approach to analyse the effects of cooperativity in the assembly of macromolecular complexes. It shows the conditions, provided by the protein concentrations, for which a particular system acts most effectively, i.e. exchanges the most information. As such this framework opens the possibility of grasping biological qualities such as system sensitivity, robustness or plasticity directly in terms of their effect on information exchange. Although these parameters might also be derived using classical thermodynamic parameters, a recasting of biological signalling in terms of information exchange offers an alternative framework for visualising network cooperativity that might in some cases be more intuitive.</p

    Sequence-specific protein aggregation generates defined protein knockdowns in plants

    Get PDF
    Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form beta-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme alpha-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops

    The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation?

    Get PDF
    Since the reformulation of the amyloid cascade hypothesis to focus on oligomeric aggregates of amyloid beta as the prime toxic species causing Alzheimer's disease, many researchers refocused on detecting a specific molecular assembly of defined size thatis the main trigger of Alzheimer's disease. The result has been the identification of a host of molecular assemblies containing from two up to a hundred molecules of the amyloid beta peptide, which were all found to impair memory formation in mice. This clearly demonstrates that size is insufficient to define toxicity and peptide conformation has to be taken into account. In this review we discuss the interplay between oligomer size and peptide conformation as the key determinants of the neurotoxicity of the amyloid beta peptide

    Detection and Quantification of Microparticles from Different Cellular Lineages Using Flow Cytometry. Evaluation of the Impact of Secreted Phospholipase A2 on Microparticle Assessment

    Get PDF
    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes

    The FoldX web server: an online force field

    Get PDF
    FoldX is an empirical force field that was developed for the rapid evaluation of the effect of mutations on the stability, folding and dynamics of proteins and nucleic acids. The core functionality of FoldX, namely the calculation of the free energy of a macromolecule based on its high-resolution 3D structure, is now publicly available through a web server at . The current release allows the calculation of the stability of a protein, calculation of the positions of the protons and the prediction of water bridges, prediction of metal binding sites and the analysis of the free energy of complex formation. Alanine scanning, the systematic truncation of side chains to alanine, is also included. In addition, some reporting functions have been added, and it is now possible to print both the atomic interaction networks that constitute the protein, print the structural and energetic details of the interactions per atom or per residue, as well as generate a general quality report of the pdb structure. This core functionality will be further extended as more FoldX applications are developed

    SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs

    Get PDF
    Single nucleotide polymorphisms (SNPs) are an increasingly important tool for genetic and biomedical research. However, the accumulated sequence information on allelic variation is not matched by an understanding of the effect of SNPs on the functional attributes or ‘molecular phenotype’ of a protein. Towards this aim we developed SNPeffect, an online resource of human non-synonymous coding SNPs (nsSNPs) mapping phenotypic effects of allelic variation in human genes. SNPeffect contains 31 659 nsSNPs from 12 480 human proteins. The current release of SNPeffect incorporates data on protein stability, integrity of functional sites, protein phosphorylation and glycosylation, subcellular localization, protein turnover rates, protein aggregation, amyloidosis and chaperone interaction. The SNP entries are accessible through both a search and browse interface and are linked to most major biological databases. The data can be displayed as detailed descriptions of individual SNPs or as an overview of all SNPs for a given protein. SNPeffect will be regularly updated and can be accessed at http://snpeffect.vib.be/

    Multiple phosphorylation of the Cdc48/p97 cofactor protein Shp1/p47 occurs upon cell stress in budding yeast

    Get PDF
    The homohexameric p97 complex, composed of Cdc48 subunits in yeast, is a crucial component of protein quality control pathways including ER-associated degradation. The complex acts to segregate protein complexes in an ATP-dependent manner, requiring the engagement of cofactor proteins that determine substrate specificity. The function of different Cdc48 cofactors and how they are regulated remains relatively poorly understood. In this study, we assess the phosphorylation of Cdc48 adaptor proteins, revealing a unique and distinctive phosphorylation pattern of Shp1/p47 that changed in response to TORC1 inhibition. Site-directed mutagenesis confirmed that this pattern corresponded to phosphorylation at residues S108 and S315 of Shp1, with the double-phosphorylated form becoming predominant upon TORC1 inhibition, ER-stress, and oxidative stress. Finally, we assessed candidate kinases and phosphatases responsible for Shp1 phosphorylation and identified two regulators. We found that cells lacking the kinase Mpk1/Slt2 show reduced Shp1 phosphorylation, whereas impaired PP1 phosphatase catalytic subunit (Glc7) activity resulted in increased Shp1 phosphorylation. Overall, these findings identify a phosphoregulation of Shp1 at multiple sites by Mpk1 kinase and PP1 phosphatase upon various stresses
    corecore