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Protein aggregation is determined by short (5–15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence
that self-associate in a specific manner to form b-structured inclusions. Here, we demonstrate that the sequence specificity of
APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic
aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the
glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme a-glucan water
dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced
aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content,
respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated
phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of
induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial
traits in crops.

In order to function properly, proteins must fold into
their native structure, but protein folding is often
challenged by protein misfolding and aggregation
(Tyedmers et al., 2010). Although protein aggregation
has long been considered as a disordered process
mediated by nonspecific hydrophobic interactions, it
is now understood to be a sequence-specific self-
association process (Mitraki, 2010; Tyedmers et al.,
2010). Indeed, both in bacterial (Sabaté et al., 2010) and
mammalian systems (Rajan et al., 2001), aggregation of
nonhomologous proteins has been shown to occur
preferentially in distinct inclusion bodies. In vitro ag-
gregation of protein solutions can be accelerated by
seeding with preformed aggregates, and this process
efficiency depends critically on the sequence homology
between seed and target protein (Krebs et al., 2004;
O’Nuallain et al., 2004). Self-seeding is generally several
orders of magnitude more efficient than cross-seeding
(Ganesan et al., 2015; Surmacz-Chwedoruk et al., 2014).
Aggregation-associated human diseases, such as
Alzheimer’s or Parkinson’s disease, are in line with this
notion because the processes underlying these diseases
are highly specific and characterized by the aggregation
of one or a few proteins in particular tissues and cell
types (Jucker and Walker, 2013).

The elucidation of the structure of amyloid-forming
peptides and protein fragments has shed light on the
molecular origin of the sequence specificity of protein
aggregation. The amyloid structure consists of the for-
mation of a so-called cross-b conformation, whereby
the peptide backbone of the aggregate creates hydrogen
bond-mediated b-strand interactions, whereas the side
chains contribute to the stability of these b-strands by
aligning with, and closely packing to, the identical se-
quence of the neighboring strand (Sawaya et al., 2007;
Makin et al., 2005). The registered stacking of side
chains explains the aggregation sequence specificity.
Indeed, backbone interactions contribute comparatively
more to the amyloid structure than to the globular pro-
tein structure (Fitzpatrick et al., 2011).

The portions of a protein sequence that are suscep-
tible to associate into aggregates by b-strand-mediated
interactions are limited to short segments, defined as
aggregation-prone regions (APRs). The APRs consist of
5 to 15 amino acids in length (Rousseau et al., 2006;
Goldschmidt et al., 2010) and can be identified by pre-
diction algorithms (Fernandez-Escamilla et al., 2004).
The determining role of APRs has been demonstrated
by “aggregation-grafting” experiments, in which in-
sertion of an APR of an aggregating protein into the
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sequence of a nonaggregating protein results in a pro-
tein with aggregation propensity and morphology
similar to those of the original protein (Ventura et al.,
2004).

Application of the prediction algorithm TANGO
(Fernandez-Escamilla et al., 2004) to the Arabidopsis
(Arabidopsis thaliana) proteome revealed that 80% of the
proteins contain APRs, implying that, similar to other
eukaryotes, plant proteomes are also susceptible to
protein aggregation (Rousseau et al., 2006). As most of
the Arabidopsis proteins harbor aggregation-prone se-
quence segments within their primary structure and as
aggregation is sequence specific, it should, in principle,
be possible to induce aggregation and, subsequently,
functional depletion of a protein by exposing it to a short
target-specific aggregating peptide in plants. First, we
tested this hypothesis by targeting proteins with kinase
activity in Arabidopsis plants. We selected the cytosolic
glycogen synthase kinase 3/Arabidopsis SHAGGY-like
kinases (GSK3/ASKs) and the chloroplast-localized
a-glucan water dikinase (GWD). Arabidopsis possesses
10 ASKs grouped into four clades (Youn and Kim, 2015)
that share a 50% overall sequence identity across the

whole protein. Among the ASKs, BRASSINOSTEROID
INSENSITIVE2 (BIN2) was characterized as a nega-
tive regulator of BR signaling (Li and Nam, 2002; Vert
and Chory, 2006; Yan et al., 2009). In addition to BIN2
and its two close homologs, BIN2-LIKE1 (BIL1) and
BIL2 (clade II), at least four other ASKs redundantly
convey BR signals via a mechanism similar to that of
BIN2 (De Rybel et al., 2009; Kim et al., 2009; Rozhon
et al., 2010).

The GWD enzyme catalyzes the phosphorylation of
starch in the chloroplasts by transferring b-ATP phos-
phate to either the C6 or the C3 position of the glycosyl
residue of amylopectin and, thus, plays an essential role
in starch metabolism (Mitsui et al., 2010). The phos-
phate groups influence the susceptibility of the starch
granules to degrading enzymes, such as b-amylases. As
a result, the starch breakdown is impaired in GWD-
deficient plants. In GWD-antisense potato (Solanum
tuberosum) plants (Lorberth et al., 1998), as well as in the
GWD-deficient starch excess1 (sex1) mutants of Arabi-
dopsis (Yu et al., 2001), the foliar starch content is sig-
nificantly higher than that of the respective wild-type
plants. In addition to the model plant Arabidopsis, we
applied the APR-mediated aggregation by targeting the
GWD enzyme in maize (Zea mays).

Our work demonstrates that overexpression of dif-
ferent APRs, derived from a single protein or protein
family, fused to a fluorescent carrier, results in specific
knockdowns similar to previously described genetic
mutants. We show that direct interactions between the
APRs and the target proteins caused the loss of function
of the proteins. Moreover, specific subcellular targeting
of the synthetic APRs can be achieved in both model
and crop plant species. Hence, the APR expression
approach presented here can be used as an innovative
knockdownmethod to inactivate proteins by specific in
vivo pull-down in defined subcellular compartments of
plants. In addition, the results also underline that, at
least in plants, protein aggregation is not cytotoxic per
se, but rather that the functional effect of the aggregates
observed here appear to be dominated by sequence-
specific cross-seeding of the aggregation of cellular
APR-sharing proteins.

RESULTS

Design of the Aggregation Constructs

To simultaneously knock out the function of all 10
ASKs in Arabidopsis by inducing specifically their
misfolding and inactivation, we applied the aggregation
prediction algorithm TANGO (Fernandez-Escamilla
et al., 2004) to BIN2 in order to identify overlapping
aggregation-prone peptides in the 10 target proteins.
One APR of nine amino acids with a TANGO aggre-
gation score greater than 50 (out of a maximum of 100)
and coding for the sequence 249QLVEIIKVL257 in BIN2
was detected (hereafter referred to as BIN2249-257; Fig.
1A; Supplemental Table S1). The BIN2249-257 APR was
situated in the kinase domain preceding the highly
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conserved TREE domain that plays a key role in the
BIN2 function (Choe et al., 2002). Comparison of the
BIN2249-257 amino acid sequence with the Arabidopsis
proteome revealed that this APR was identical to the
APRs identified in 8 of 10 ASKs and differed with only
one amino acid (Val-256 to Ile-256) in the APRs of the
remaining two ASKs (Fig. 1A; Supplemental Table
S2). For modulation of the APR aggregation proper-
ties, different synthetic aggregating blocks (SABs)
were designed. Each SAB was C-terminally fused to
GFP for visualization and solubility increase (Fig. 1C;
Supplemental Table S3). To stimulate aggregation, the
BIN2 APR was combined with a modified version of
the unnatural amyloid-forming booster (B) sequence
STVIIE (López De La Paz et al., 2002; BIN2249-257B). In
contrast, to slow down the aggregation of the syn-
thetic booster by charge repulsion (Chiti et al., 2003),
an Arg (R) was included on both APR flanks, thus mod-
ifying the BIN2249-257B into BIN2249-257RB (Supplemental
Table S3). As charged residues are enriched at the flanks
of APRs to decrease aggregation and function as natural
“aggregation gatekeepers” (De Baets et al., 2014), five to
six naturally flanking (NF) amino acidswere added to the
BIN2249-257 APR and expressed, including the first six
amino acids of the BIN2 protein (MADDKE) in a single
copy (BIN2249-257NF) or in tandem (T) (BIN2249-257NFT)
(Supplemental Table S3). The aim of the tandem
constructs was to amplify the aggregation potential
by mimicking the repeating patterns of APRs that are
observed in naturally occurring functional amyloids,
such as the yeast prions (Bednarska et al., 2016).
The GWD protein is encoded by a single gene in

Arabidopsis and in maize. Similarly, the prediction
algorithm TANGO (Fernandez-Escamilla et al., 2004)
was used to identify APRs in orthologous proteins
of Arabidopsis (AtGWD) and maize (ZmGWD;
Supplemental Table S1). Three different APRs with a
TANGO score higher than 50 were identified for each
target protein in Arabidopsis and maize (Fig. 1B;
Supplemental Table S1). The Arabidopsis APRs
AtGWD534-541 and AtGWD821-829 were identical to the
maize ZmGWD599-610 and ZmGWD889-897, respectively,
whereas the APRs AtGWD1227-1234 and ZmGWD1082-1088

were specific for each species (Fig. 1B). Searches of the
Arabidopsis proteome with the three selected GWD
APRs did not reveal proteins containing identical APRs
orAPRswith a singlemismatch (Supplemental Table S2).
However, the ZmGWD1082-1088 APR was similar to five
unrelated proteins in the maize proteome (one mismatch)
and was excluded from further studies.
The SABs for the GWD proteins consisted of tandem

APRs flanked by the NFs of BIN2 and fused at their N
terminus to a chloroplast transit peptide signal sequence
for specific targeting to the chloroplasts (Supplemental
Table S3) and at their C terminus to GFP or YFP when
expressed in Arabidopsis and maize, respectively
(Fig. 1C). The SABsAtGWD534-541NFT, AtGWD821-829NFT,
and AtGWD1227-1234NFT were expressed in Arabidopsis,
whereasZmGWD599-610NFT andZmGWD889-897NFTwere
introduced into maize after codon usage optimization.

In Vivo Aggregation Induced by Expression of Selected
APRs in Plant Cells

All constructs, including controls, such as free GFP
and booster (B)-GFP (Supplemental Table S3) were
expressed transiently in leaf epidermis of tobacco
(Nicotiana benthamiana) and stably in Arabidopsis with
the constitutive cauliflower mosaic virus (CaMV) 35S
promoter. Confocal fluorescence microscopy was used
to evaluate the aggregation formation in the tobacco
leaf epidermal cells 4 d after infiltration (Fig. 2) and in
epidermal cells of roots, hypocotyls, and cotyledons
of 7-d-old Arabidopsis plants grown in vitro
(Supplemental Fig. S1). Consistently in both expression

Figure 1. Selected APRs and aggregation constructs design. A, Multiple
alignment of ASK amino acid sequences with the aggregating peptide
BIN2249-257. B,Multiple alignment of the APRs targeting theGWDprotein
in Arabidopsis (AtGWD534-541, AtGWD821-829, and AtGWD1227-1234) and
in maize (ZmGWD599-610, ZmGWD889-897, and ZmGWD1082-1088) with
their target protein, respectively. Identical residues are underlined with
asterisks and indicated in red for Arabidopsis and in green for maize. The
TREE kinase domain, conserved within the amino acid sequences of
ASKs, is indicated in blue. Alignments were done with Clustal Omega. C,
Schematic representation of constructs expressing different APR variants,
indicated as SABs. SABs are fused to eGFP or cYFP at their C terminus.
Only the GWDAPRs were targeted to the chloroplast by adding a transit
peptide at their N terminus. p35S, CaMV 35S promoter; pPePC, PepC
promoter; eGFP, enhanced GFP; cYFP, citrine YFP; KanR/BastaR,
kanamycin/Basta resistance gene; RB, right border; LB, left border.
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systems, the SABs containing either the booster se-
quence in combination with the Arg-flanked APR
(BIN2249-257RB) or the tandemly repeated APRs
(BIN2249-257NFT) were the most effective in perinuclear
accumulation of GFP-labeled aggregates (Fig. 2A;
Supplemental Fig. S1A). In contrast, the free GFP
control accumulated throughout the cytosol and in-
side the nucleus. The B-GFP and BIN2249-257B-GFP
fusions accumulated mainly in inclusion bodies, in-
dicating low solubility of the aggregates, whereas
the BIN2249-257NF-GFP fusion was found predomi-
nantly in the cytosol, implying a reduced aggrega-
tion tendency (Fig. 2A; Supplemental Fig. S1A).

Transient expression of all GWD SABs in tobacco leaf
epidermis resulted in aggregate formation inside the
plastids, except for ZmGWD1082-1088NFT, in which the
YFP fluorescence was visible as a diffused signal in the
chloroplasts (Fig. 2B). Consistently, when stably trans-
formed in Arabidopsis plants, the AtGWD534-541NFT
and AtGWD821-829NFT SABs, but not AtGWD1227-1234NFT-
GFP, caused the formation of GFP-labeled aggregates
inside the chloroplasts in leaf epidermal and palisade
cells (Supplemental Fig. S1B). The ZmGWD599-610NFT and
ZmGWD889-897NFT SABs were stably expressed in
maize under control of the maize mesophyll-specific
phosphoenolpyruvate carboxylase (PepC) promoter,
previously used to down-regulate GWD only in
leaves, where the enzyme is the most abundant
(Sattarzadeh et al., 2010). Confocal microscopy
revealed that in mesophyll cells of the third or fourth
leaves of 14-d-old transgenic maize seedlings,
ZmGWD889-897NFT and ZmGWD599-610NFT induced
pronounced aggregate formation (Supplemental
Fig. S1C) in the chloroplasts, as seen in the tobacco
experiments.

Next, we analyzed cell extracts of transgenic Arabi-
dopsis plants (Fig. 3, A and B) and tobacco leaves
transiently expressing the GFP-tagged SABs
(Supplemental Fig. S2, A and B) under nondenaturing
conditions by means of Blue Native (BN)-PAGE to
verify the Mr of the induced aggregates and whether
the target proteins had presumably acquired a different
electrophoretic mobility when a specific APR was
overexpressed. The BN-PAGE analysis revealed the
occurrence of high-Mr protein complexes for all SABs.
Notably, the BIN2 SABs containing the booster se-
quence induced the highest Mr protein complexes and
the APRs in tandem induced the formation of aggre-
gates more than twice the Mr of a single APRs (Fig. 3, A
and B; Supplemental Fig. S2A). Interestingly, aggregates
seemed to be less abundantly induced by the expression
of YFP-tagged SABs than by that of the respective GFP
fusions, suggesting that the choice of the fluorescent
carrier protein most probably influences protein aggre-
gation (Supplemental Fig. S2B).

To investigate the biochemical nature of the aggre-
gates formed in plant cells, we analyzed by means of
Fourier transform infrared (FTIR) spectroscopy the
high-Mr aggregates that had been immunoprecipitated
with anti-GFP antibodies from lysates prepared from

Arabidopsis transgenic seedlings that expressed dif-
ferent BIN2 SABs. For all constructs, IR absorption
peaks 1620, 1635, and 1690 cm21 were detected (Fig.
3C). This result supports the formation of an amyloid-
like b-structure because absorbance of IR light at these
wave numbers is a characteristic feature of b-structures.
Transmission electron microscopy (TEM) combined
with immunogold labeling of different Arabidopsis
tissues expressing the BIN2 SABs with the strongest
aggregation properties, namely, BIN2249-257RB and
BIN2249-257NFT, revealed that aggregates localized in
the cytosol. In the BIN2249-257RB-producing plants, the
aggregated proteins accumulated either as amor-
phous clusters or as more ordered and elongated
fibril-like structures (Fig. 3, D and E), whereas in the
BIN2249-257NFT plants, these ordered structures were
absent and free cytosolic proteins occurred most fre-
quently (Fig. 3F). These variations in aggregate mor-
phology reflected the differences in construct design and
the impact of the strongly aggregating amyloid-forming
booster sequence.

The APRs Interacted Specifically with Their Targeted
Proteins in Vivo

To evaluate the specificity of the induced protein
aggregations, we carried out colocalization experi-
ments in leaf epidermal cells of tobacco between GFP-
taggedASKs (BIN2, BIL1, ASKa, ASKg, andASKu) and
the RFP-tagged BIN2249-257NFT, expressed from CaMV
35S and estradiol-inducible promoters, respectively.
Four days after transfection and following a 24-h in-
duction of the BIN2249-257NFT-RFP expression, a strong
colocalization was observed between the APR and all
target proteins (Supplemental Fig. S3).

The direct interaction between the BIN2249-257 APR
and each of the 10 target ASKs was confirmed by a bi-
molecular fluorescence complementation (BiFC) assay.
Coexpression of each of the ASKs tagged with the N-
terminal GFP fragment (nGFP) and the BIN2249-257NFT
tagged with the C-terminal part of GFP (cGFP) in to-
bacco leaves resulted in a fluorescent signal (Fig. 4A;
Supplemental Table S4). The self-interaction property
of the BIN2249-257 APRwas assessed by coexpressing the
BIN2249-257NFT-nGFP and BIN2249-257NFT-cGFP con-
structs (Fig. 4A). In all cases, despite the observed GFP
signal, no GFP-labeled aggregates were formed, prob-
ably due to the slow reassociation of the two GFP
fragments that could have slowed down the aggregate
formation.

Next, the hemagglutinin (HA)-tagged BIN2 was
coimmunoprecipitated in all samples after transient
coexpression with each BIN2249-257 APR-containing
construct in tobacco leaf epidermal cells, validating
the direct interaction between BIN2249-257 and its target
protein in vivo (Fig. 4B). Remarkably, substitution of
Val-251 and Ile-254 by two prolines (P) that lowers the
aggregation propensity (Richardson and Richardson,
2002) in the BIN2249-257 APR, completely abolished its
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aggregation capacity (Supplemental Tables S1–S3) and
the interaction with its target protein BIN2 (Fig. 4B).
To additionally assess the specificity of the BIN2249-257

APR for binding random proteins containing similar

APR sequences, we tested the interactions between
the BIN2249-257NFT SAB and the Arabidopsis basic
helix-loop-helix transcription factor MUTE (Pillitteri
et al., 2007). MUTE had been identified as the only

Figure 2. Subcellular localization of the APRs. A, Tobacco leaf epidermis cells transiently expressing BIN2249-257B, BIN2249-257RB,
BIN2249-257NF, BIN2249-257NFT, synthetic booster (B), and free GFP coinfiltrated with a nuclear localization signal-red fluorescent protein
marker (NLS-RFP). Nuclei (N) are visible in the red channel. B, Subcellular localization of AtGWD534-541NFT-GFP, AtGWD821-829NFT-GFP,
AtGWD1227-1234NFT-GFP, ZmGWD599-610NFT-YFP, ZmGWD889-897NFT-YFP, and ZmGWD1082-1088NFT-YFP. The chlorophyll (Ch) auto-
fluorescence is visualized in the red channel. Arrows point to aggregates labeled with GFP or YFP. Bars = 20 mm (A) and 10 mm (B).
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Arabidopsis protein containing an APR that differed
from BIN2249-257 by two amino acids (Glu-252 into
Lys-252 and Lys-255 into Ser-255) and had a TANGO
score of 46 (Supplemental Table S2). Both BiFC and
coimmunoprecipitation experiments did not reveal
interactions between the BIN2249-257 APR and the
MUTE protein (Fig. 4, A and C; Supplemental Table
S4). The BIN2249-257 APR also did not interact with
randomly selected, nonhomologous, and overex-
pressed proteins, such as the clathrin light chain
(CLC) (Supplemental Fig. S4). In addition, we detec-
ted the GWD protein by means of a GWD-specific
antibody after BN-PAGE of protein extracts from
tobacco leaves and after immunoprecipitation with
anti-GFP antibodies (Supplemental Fig. S2C). Altogether,
this evidence supports the high APR specificity in target
interactions.

Arabidopsis Plants Expressing an APR That Targeted the
10 ASKs Showed Weak Constitutive BR Responses

To assess whether the expression of the BIN2249-257

APR induced loss of function of the targeted ASK pro-
teins, we analyzed the growth and developmental phe-
notypes of 7-d-old in vitro- and light-grown Arabidopsis
plants overexpressing the SABs with strong aggre-
gation properties (BIN2249-257RB and BIN2249-257NFT).
The ASK promoter-GUS studies revealed that ASKa,
ASKg, and BIN2 are the most abundantly expressed
ASKs at this developmental stage (Supplemental Fig.
S5) and, thus, most probably targeted ASKs by
the BIN2249-257 APR. Representative T3 homozygous
transgenic lines overexpressing each BIN2249-257RB
and BIN2249-257NFT (Supplemental Fig. S6A) displayed
longer hypocotyls and roots than the wild-type control

Figure 3. Expression of BIN2 andGWDAPRs leading to aggregate formation. A and B, BN-PAGE and immunoblots with anti-GFP
antibodies of protein aggregates induced by expression of different BIN2 (A) and GWD (B) SABs in Arabidopsis, in respect to the
wild type (Col-0), booster (b)-GFP, and free GFP controls. BN-PAGE was run under nondenaturing conditions to determine the
native masses of protein complexes. C, FTIR analysis of the high-Mr aggregates immunoprecipitated with anti-GFP antibodies
from lysates prepared from Arabidopsis transgenic seedlings that expressed different versions of BIN2 SABs. D to F, TEM im-
munolocalization with anti-GFPantibodies of BIN2249-257RB-GFPand BIN2249-257NFT-GFP in hypocotyls (D) and in cortical cells
of the root elongation zone (E and F). Ultrathin sections were poststained in uranyl acetate and lead citrate and grids were viewed
with a JEM-1010 TEM (Jeol) operating at 80 kV. Bars = 0.1 (inset) and 0.5 mm in D and F, and 0.1 mm in E. Seven-day-old T3
Arabidopsis seedlings were used in all experiments. Arrows point to GFP-labeled protein aggregates.
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Figure 4. Specific in vivo interaction between BIN2 and the BIN2249-257 APR. A, BiFC assay of BIN2249-257NFT-cGFP coexpressed with
different nGFP-tagged ASKs and BIN2249-257NFT-nGFP in tobacco leaves, 3 d after infiltration. In the last panel, the interaction between
BIN2249-257NFT-cGFP and MUTE is also shown as a negative control. Bars = 50 mm. B, Coimmunoprecipitation in tobacco leaves of
BIN2-HAwith different BIN2249-257 SABs after coexpression for 3 d. Booster (B)-GFP, free GFP, BIN2-HA, mock (not infiltrated leaf), and
BIN2P249-257NFT-GFP are included as negative controls. Proteins were detected with anti-HA and anti-GFP antibodies. C, Coimmu-
noprecipitation of BIN2249-257NFT-GFP with MUTE-GS or GS-MUTE proteins coproduced for 3 d as in B. GFP, MUTE-GS, GS-MUTE,
andmock are included as negative controls; the GS tag (consisting of a protein G tag and a streptavidin-binding peptide) reacts with the
antiperoxidase (PAP) antibody. Anti-PAP and anti-GFP antibodies were used for protein detection.
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Columbia-0 (Col-0; Fig. 5, A–C) and 1-month-old plants
from the same transgenic lines grown in soil had larger
rosettes than Col-0 (Fig. 5D). All tested transgenic lines
were partially resistant to the specific BR biosynthesis
inhibitor brassinazole (BRZ; Asami et al., 2000; Fig. 5E)
and showeddown-regulation of the BR-biosynthetic genes
CONSTITUTIVE PHOTOMORPHOGENIC DWARF
(CPD; Szekeres et al., 1996) and DWARF4 (DWF4;
Choe et al., 1998; Fig. 5F) and up-regulation of the
transcription factor BRASSINAZOLE RESISTANT1
(BZR1; Wang et al., 2002). Furthermore, overexpression
of the BIN2249-257RB in a weak mutant allele of the BR
receptor bri1-5 partially rescued the mutant phenotype
(Fig. 5G). These phenotypes were in line with the antici-
pated enhanced BR signaling due to the inactivation of
the BR-negative regulators, as shown previously for the
bin2-3 knockout mutant (Yan et al., 2009).

Comparison of different tissues of wild-type and
transgenic Arabidopsis plants expressing BIN2249-257RB
and BIN2249-257NFT at the ultrastructural level indicated
that the analyzed subcellular organelles, such as mito-
chondria and chloroplasts, were similar in terms of
shape, size, and localization with those of the wild-type
plants grown in vitro (Supplemental Fig. S7). In accor-
dance, a genome-wide expression analysis revealed
that only a few genes were differentially regulated
(Supplemental Table S5), of which 17 were down-
regulated (,0.5-fold change) and 33 were up-regulated
(.1.5-fold change) in the BIN2249-257NFT-expressing line
when compared to the wild type. The changes in ex-
pressionwere subtlewith amedian increase below 2 (1.7)
and gene ontology searches associated the affected genes
with stress responses, hormone signaling, or chaperones.
Interestingly, a 5-fold increase in the expression of the
heat shock protein 70 (HSP70) was detected and later
confirmed by quantitative reverse-transcription PCR
(qRT-PCR) experiments (Supplemental Fig. S6B), im-
plying that the observed aggregate formation had
triggered the chaperone machinery to minimize protein
aggregation. Altogether, the beneficial phenotypic traits,
the plant tissue morphology, and the transcriptome data
suggest that Arabidopsis plants are able to accommodate
the constitutive expression of APRs without cytotoxic
side effects, thus allowing the expression of aggregation-
induced knockdown phenotypes.

GWD-Targeted Aggregation in Arabidopsis and Maize

In order to prove that the targeted protein aggre-
gation is usable for proteins with different functions
and subcellular localizations, Arabidopsis plants
expressing AtGWD534-541NFT and AtGWD821-829NFT
SABs fused to GFP and designed to target the AtGWD
protein (Fig. 1B; Supplemental Table S3) were evalu-
ated for loss-of-function phenotypes and compared
with the known Arabidopsis GWD mutant sex1-5 (Yu
et al., 2001). The AtGWD1227-1234NFT-expressing
plants were not analyzed because of lack of GFP flu-
orescence. T3 homozygous transgenic lines, each

overexpressing AtGWD534-541NFT or AtGWD821-829NFT
(Supplemental Fig. S6C), were grown in soil for 6 weeks.
The rosettes of AtGWD821-829NFT-expressing plants were
smaller than those of the wild type and comparable to
those of the sex mutants (Fig. 6, A and B). In agreement
with the phenotypic observations, a significant increase
in starch content in the fourth and fifth leaves of 6-week-
old Arabidopsis plants was detected by means of an
iodine staining only in the line overexpressing the
AtGWD821-829NFT-GFP construct (Fig. 6, C and D).

T2 transgenic maize plants (Fig. 7) overexpressing
ZmGWD599-610NFT-YFP and ZmGWD889-897NFT-YFP
proteins (Supplemental Fig. S6D) that had been pre-
dicted to aggregate the maize GWD ortholog were
evaluated for growth phenotypes and starch content.
At least two segregating T2 transgenic lines per con-
struct were analyzed. Eight-week-old mature plants
from both lines showed mild growth retardation phe-
notypes in comparison to the B104 wild-type control
when grown in the greenhouse (Fig. 7). Iodine staining
of 10 leaf disks from the mature zone (Nelissen et al.,
2012) of leaf 7 to leaf 10, collected at approximately
3 cm distance from each other, revealed a 10% starch
increase in leaf 8 and leaf 9 of plants expressing
ZmGWD599-610NFT-YFP and approximately 8% in leaf
9 and 10 of plants expressing ZmGWD889-897NFT-YFP
(Fig. 7B; Supplemental Fig. S8).

DISCUSSION

Here, we demonstrated the potential of targeted ag-
gregation to specifically down-regulate a protein func-
tion in plants without affecting the cellular viability and
the overall plant fitness. The proposed method is based
on the fact that protein aggregation is oftenmediated by
short aggregation-prone segments of polypeptide
chains that become exposed uponmisfolding, leading
to their assembly into intermolecular aggregates.
Overall, this self-assembly process has been shown to
be remarkably specific because most proteins are un-
able to coaggregate and protein deposits in patients
affected by neurodegenerative diseases are highly
enriched in one particular protein (Rajan et al., 2001;
Ren et al., 2009).

Although aggregate formation has been observed in
bacteria, fungi, insects, invertebrates, and humans, in
which it is usually associated with numerous diseases,
this process is most probably ubiquitous across all the
kingdoms, including plants. The aggregation propen-
sity of the complete Arabidopsis proteome, analyzed by
the protein aggregation prediction algorithm TANGO,
was similar to that of other eukaryotes: 12% of the
Arabidopsis proteome possesses a significant aggre-
gation tendency versus 11.3% of the human proteome
(Rousseau et al., 2006), suggesting that plants can be an
attractive model to study protein aggregation. We
show that it is possible to induce targeted aggregation
of selected proteins in different locations in the plant
cell and in different plant species. Our results indicate
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Figure 5. Constitutive BR responses in Arabidopsis plants expressing the BIN2 APR. A, Seven-day-old in vitro-grown Arabidopsis
wild-type (Col-0) and T3 transgenic plants expressing BIN2249-257RB and BIN2249-257NFT. B and C, Hypocotyl and root length
measurements of the plants shown in A (n. 15). D, Rosettes and rosette area quantification of the lines shown in A and grown in
soil for 30 d (n = 8). E, Hypocotyl lengths, relative to Col-0, of BIN2249-257RB, BIN2249-257NFT, and bin2/bil1/bil2 seedlings grown
in the dark for 5 d onmedium containing DMSO or 1 mMBRZ (n. 15). F, Relative expression ofDWF4, CPD, and BZR1 genes in
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that the overexpression of APRs with a predicted high
aggregation potential can trigger misfolding and sub-
sequent aggregation of the endogenous proteins (e.g.
ASKs and GWD), resulting in a conditional loss of their
activity and leading to constitutive BR responses and
increased amounts of starch, respectively. Thus, our
data demonstrate that the coaggregation of polypep-
tides in plant cells also depends on the involvement of
a short aggregation-nucleating region. The process of
targeted aggregation shares similarities with the func-
tional regulation of yeast prions, although important
differences should be noted.

Both yeast prion formation and targeted aggregation
of ASKs or GWD appear to be governed by protein-
specific aggregation without overall cell toxicity. This
notion is supported by the observed phenotypes with

an increased plant biomass and lack of defects at the
ultrastructural level in various subcellular organelles,
such as mitochondria and chloroplasts, for the ASK
plants that overexpress APRs. In addition, a genome-
wide expression study of these plants revealed very
subtle changes in gene expression. The 5-fold increase
of the HSP70 expression is most probably an adaptive
change to the proteostatic network rather than a strong
stress response. Although previous expression profile
analyses of the Arabidopsis HSP70 genes have shown
that these chaperones are indeed overexpressed in
response to environmental stresses, such as heat,
drought, and chemical treatments, the amplitude of the
HSP70 up-regulation in these experiments ranged be-
tween a 15- to 20-fold change (Sugio et al., 2009). In
addition, a high overexpression of the major cytosolic

Figure 5. (Continued.)
7-d-old Col-0, BIN2249-257RB, BIN2249-257NFT, and bin2/bil1/bil2 seedlings. G, Phenotypes and rosette area quantification of
30-d-old bri1-5 and two independent bri1-5/BIN2249-257RB T3 line 5 and line 8 (n = 8). Error bars represent SD, *P,0.05,
**P,0.001, and ***P,0.0001 (Student’s t-test). N, number of plants analyzed.

Figure 6. GWD-targeted aggregation in Arabidopsis. A and B, Phenotypes and rosette area quantification (n = 10) of 6-week-old
Arabidopsis T3 transgenic plants expressing AtGWD534-541NFT-GFPand AtGWD821-829NFT-GFP, respectively. The wild type (Col-0)
and sex1-5mutant were used as controls (n = 10). C andD, Lugol staining and intensity color quantification of the 4th and 5th leaves
from 6-week-old Arabidopsis T3 transgenic plants shown in A. The Lugol staining intensities are shown as grey values in pixels, with
the values 0 and 250 pixels for black andwhite for 8-bit images, respectively (n = 4). Error bars represent SD, ***P,0.0001 (Student’s
t-test). n, Number of plants analyzed.
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HSP70 in Arabidopsis had negative consequences for
plant growth and viability (Sung and Guy, 2003). In
contrast, no changes were observed in root growth. The
profile of the transcriptional features of the responses to
misfolded protein accumulation due to heat stress in
the cytosol has revealed that the overall number of
genes affected is much higher (2696 genes; Sugio et al.,
2009) than that in our study (39 genes), hence excluding
any proteotoxic effect generated by the overexpression
of the APRs.
Moreover, threshold effects were detected for

the functional knockout of the selected proteins. Plants
that displayed obvious ASK knockdown pheno-
types accumulated perinuclear aggregates marked
by GFP fluorescence (Fig. 2A; BIN2249-257RB and

BIN2249-257NFT), as previously shown in yeast and
mammalian cells (Kaganovich et al., 2008). When GFP
was visible in inclusion bodies (Fig. 2A; BIN2249-257B),
indicative of low aggregate solubility, no phenotypes
were observed, similarly to the cytoplasmic APRs (Fig.
2A; BIN2249-257NF). In the case of the GWD protein, dif-
ferent APRs were tested in Arabidopsis and in maize.
Likewise to the BIN2 knockdown, GWD loss-of-function
phenotypes were generated with the APRs capable to
form GFP-labeled aggregates inside the chloroplasts. In-
terestingly, the level of overexpression of the APRs and
their protein knockdown capacities did not correlate.
Overall, the APR-generated phenotypes were weaker
than those of the known genetic mutants. When applied
to multiple gene families, the efficiency of the targeted

Figure 7. GWD-targeted aggregation inmaize. A, Phenotypes of 80-d-old T2 segregatingmaize lines expressing ZmGWD599-610NFT-YFP
or ZmGWD889-897NFT-YFP from the mesophyll-specific promoter (pPePC) and compared with the wild-type control (B104). B,
Lugol staining quantifications of mean gray values of leaf 7 to10 in plants shown in Supplemental Fig. S8, A and B. The Lugol
staining intensities are presented as relative grey values. Error bars represent SD, *P,0.05 (Student’s t-test).
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aggregation is most probably limited by the expression
pattern of each gene member, the protein turnover, and
the successful delivery of the APR to the respective tar-
gets. Therefore, tissue- and cell-specific promoters and
specific sequences are essential to target the APRs to
cellular organelles, as is the case for GWD.

We demonstrated that the target-specific APRs can
be used to selectively knockdown proteins in plants.
Our results show that APRs with similar TANGO
scores (49–52) and high sequence identity (89%, one
mismatch) can bind the target proteins, whereas an
APR with a TANGO score of 46, but bearing two mis-
matches (78% sequence identity), displayed a interac-
tion loss. A complete lack of interaction was also
observed when Val-251 and Ile-254 in the BIN2 APR
were substituted by Pro that drastically reduces the
aggregation propensity by breaking the b-strand
structure (Richardson and Richardson, 2002) and, thus,
lowers the TANGO score to 0, even with maintenance
of the sequence identity (78%). In general, our data are
in agreement with previous studies in which the spec-
ificity of APR-mediated interactions is determined by
the combination of aggregation propensity and se-
quence matching (Ganesan et al., 2015).

Besides its use as protein function-suppressing
method, our approach emerges as a powerful tool to
study protein aggregation mechanisms. Aggregation is
often examined in the context of human diseases, in
which aggregation of particular proteins is generally
linked to lethal phenotypes. Virtually nothing is known
about the mechanisms that control the self-assembly of
proteins into aggregates in plants. The FTIR spectros-
copy supports the hypothesis that b-sheet-containing
aggregates are induced by the overexpression of the
selected APRs. In addition, TEM combined with
immunogold APR labeling in different Arabidopsis
tissues has revealed that aggregated proteins accumu-
late both as amorphous clusters and as more ordered
and elongated fibril-like structures, suggesting that
aggregate formation in plants might differ from the
known amyloid formation in mammalian cells.

Overall, our data show that endogenous production
or artificial introduction into a cell of small peptides
with the APRs of a targeted protein will provide the
opportunity to generate highly specific protein knock-
downs posttranslationally in different plant species.
This method has several potential advantages in respect
to known knockdown approaches that act at the ge-
nomic or transcriptional level, such as T-DNA or
transposon insertions and RNA-mediated gene sup-
pression (RNA interference [RNAi], artificial microRNA,
and antisense RNA) that can often suffer from significant
drawbacks, such as off-target effects or systemic silenc-
ing. Additionally, sensitivity to environmental and de-
velopmental stresses and the observed trait instability
also affect the efficiency of the RNA-silencing technology
(Small, 2007; Frizzi and Huang, 2010). The APR peptides
can also be expressed over several generations without
silencing, therefore overcoming the phenotypic instabil-
ity of the RNAi technology.

As the synthetic APR-containing peptides can be
targeted to different cellular compartments or be se-
creted in the apoplast, protein knockdowns with high
selectivity can be obtained. The latter might generate
the development of a knockdown strategy with appli-
cations in crop protection, when RNAi has failed to
induce resistance against a number of pathogens (Price
and Gatehouse, 2008). In comparison to the antibody-
based technology, in which the produced recombinant
proteins can have a low activity due to incorrect folding
and often have low product yields and recovery prob-
lems (Ahmad et al., 2012), the intrinsic nature of the
APRs to form b-sheet structures assures their structural
stability when overexpressed in cells.

MATERIALS AND METHODS

In Silico Analysis

Multiple sequences of ASKs and BIN2249-257 APR were aligned with the
Clustal Omega program (Sievers et al., 2011), as well as AtGWD534-541,
AtGWD821-829, AtGWD1227-1234, ZmGWD599-610, ZmGWD889-897, and ZmGWD1082-1088

APRs against their corresponding target protein fragments in AtGWD and
ZmGWD sequences. The GWD gene of maize (Zea mays; GRMZM2G412611,
UniProtKB annotation, A0A096TN87), orthologous to that of Arabidopsis
(Arabidopsis thaliana; At1g10760) was identified with the PLAZA2.5 bio-
informatics platform (Proost et al., 2009). The aggregation propensity of the
GSK3/ASK proteins was calculated with the algorithm TANGO (Fernandez-
Escamilla et al., 2004) that predicts aggregation-nucleating sequences in
proteins. To ensure the discovery of all sequences matching a given APR
within a certain number of mutations, we used an exhaustive algorithm that
compares the APR sequence to all possible fragments of the same size in the
proteome (Ganesan et al., 2015).

Plant Material, Growth Conditions, and
Plasmid Engineering

Arabidopsis accessions Col-0 or Wassilewskija (Ws-2) and maize B104 inbred
line (Hallauer et al., 1997) were used for transformation and 4-week-old Nico-
tiana benthamiana plants for leaf infiltration experiments. The bin2/bil1/bil2,
bri1-5, and sex1-5mutant lines had been described previously (Vert and Chory,
2006; Noguchi et al., 1999; Yu et al., 2001).

TheASK,MUTE, andCLC genes and theBIN2249-257,BIN2P249-257,AtGWD534-541,
AtGWD821-829, AtGWD1227-1234, ZmGWD599-610, and ZmGWD889-897 sequences
(Supplemental Table S6) were cloned in the pDONR221 vector (Invitrogen) and
ASKs and PepC promoters in pDONR-P4P1 via Gateway cloning (Invitrogen).
The PepC promoter sequencewas derived from the pPTN512 vector (Sattarzadeh
et al., 2010). The CaMV 35S promoter containing pEN-L4-2-R1 (Karimi et al.,
2007) was also used, whereas the pEN-R2-F-L3 (Karimi et al., 2007), pEN-
R2-citrineYFP-L3 (kind gift from Hilde Nelissen), and pDONR-P2R-TagRFP-P3
(Merzlyak et al., 2007) entry clones were used to generate translational fusions
to GFP, YFP, or RFP in the pK7FWG2, pK7m34GW, pBb7m34GW, or
pH7m34GWdestination vectors (Karimi et al., 2007). ForMUTE-GS fusions, the
pDONR221-expressingMUTE (At3g06120) was fused N-terminally rather than
C-terminally to the GS Rhino tag. For the N-terminal fusions, pDONR221-
MUTE was cloned into the pkNGSrhino destination vector (Van Leene et al.,
2015). For the C-terminal fusions, pDONR221-MUTE was recombined with
pDONR-P2R-GSRhino-P3 and pDONR-P4-35S-P1 donor vectors (Van Leene
et al., 2015). For BIN2-HA fusions, a pKm43GW destination vector (Karimi
et al., 2007) was used overexpressing (CaMV 35S promoter) the BIN2 gene fused
to 33 HA tag. The estradiol-inducible BIN2249-257NFT-RFP construct was
engineered with the pMDC7-m13GW destination vector (Curtis and Grossni-
klaus, 2003). The sequence of the chloroplast transit peptide signal from the
small ribulose-1,5-biphosphate carboxylase/oxygenase subunit of pea (Pisum
sativum; Bowler et al., 1991; Supplemental Table S6) was included at the 59 of the
AtGWD534-541, AtGWD821-829, AtGWD1227-1234, ZmGWD599-610, and ZmGWD889-897

sequences. The ASK promoter sequences were recombined into the
pMK7S*NFm14GW vector (Karimi et al., 2007) to generate transcriptional
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fusions to a nuclear localization signal (NLS)-GFP-GUS, of which the pBIN2::
NLSGFP-GUS construct had been described previously (Gudesblat et al., 2012).
For the BiFC experiments, BIN2249-257NFT, ASKs, and MUTE were fused to the
N or C terminus of GFP fragments (nGFP or cGFP) as described (Boruc et al.,
2010). As negative controls, constructs overexpressing nGFP or cGFP were
used. Codon usage was optimized for the expression in Arabidopsis andmaize.
The resulting expression clones were transformed into Agrobacterium tumefaciens
for plant transformation. For transient expression experiments, the abaxial sides of
4-week-old tobacco leaves were infiltrated with A. tumefaciens strains cultivated
with the virulence gene activator acetosyringone as described (Boruc et al., 2010).
For estradiol inductions, tobacco leaves were reinfiltrated with 20 mM estradiol
3 d after injection and imaged 24 h after induction with the ImageJ software
(http://rsb.info.nih.gov/ij/).

Arabidopsis seeds were stratified in the dark at 4°C for 2 d and germinated on
half-strength Murashige and Skoog (MS) medium (1% [w/v] Suc) under long-
day (16 h light/8 h dark) conditions at 20 to 22°C before transfer to soil. BRZ and
estradiol were purchased from TCI Europe and Sigma-Aldrich, respectively.
For the GUS activity analysis, 7-d-old Arabidopsis seedlings were processed as
reported (Zhiponova et al., 2013).

For maize transformation, immature embryos of the B104 inbred line
were cocultivated for 3 d with A. tumefaciens EH101 containing the
ZmGWD constructs in plasmid pBb7m34GW (Coussens et al., 2012).
Cocultivated embryos were cultured in the dark for 1 week on nonselec-
tive medium and transformed embryogenic callus was selected for 10
weeks on phosphinothricin-containing medium. Transgenic rooted (T0)
plantlets were induced in light on regeneration medium. The presence of
the transgene was confirmed by PCR and a commercial phosphinothricin
activity assay (TraitChek Crop and Grain Test Kit; Strategic Diagnostic)
was used to test the selection marker activity. Transgenic T0 plants were
grown to maturity in the greenhouse, back-crossed (BC) to the wild type
B104. BC progenies were harvested and analyzed (T1). BC of T0 plants to
the wild type B104 in a reciprocal way was done to secure sufficient
transgenic T1 seed production. T1 plants were grown to maturity and self-
fertilized. The resulting T2 seeds were also germinated and analyzed. The
primers used are presented in Supplemental Table S4.

Phenotype Analysis

Root and hypocotyl lengths of vertically grown 7-d-old seedlings were
measured with the ImageJ software (http://rsb.info.nih.gov/ij/). Rosette leaf
areas were calculated with ImageJ on 5- to 6-week-old Arabidopsis plants
grown in soil. Means and standard deviations were calculated with the Excel
2010 software and the statistical significance by the P values of a two-tailed
Student’s t test. For maize, the pictures of approximately 80-d-old T2 plants
were taken during anthesis and compared to untransformed plants from each
transformation event.

For qualitative starch analyses, nonsenescent foliar tissues were boiled in 80%
ethanol to remove chlorophyll and subsequently stained with Lugol iodine
solution (Sigma-Aldrich). For Arabidopsis, the fourth and the fifth leaves of
6-week-old plants were taken, whereas formaize, 10 leaf disks per leaf, in leaves
7 to 10 of 8-week-old T2 segregating plants, were collected starting approxi-
mately 45 cm from the tip (punch number 1) until about 12 cm from the leaf base,
keeping a distance of approximately 3 cm between each punch.

For Lugol staining quantifications of starch, mean gray values in pixels were
measured in 8-bit RGB images with the Image J software. A fixed area was
measured for each leaf sample, setting the scale in pixels and to 0. In 8-bit images,
the grayscale goes from aminimumvalue of 0 pixel (black) to amaximum value
of 250 pixel (white).

qRT-PCR and Microarray

For qRT-PCR analyses, cDNA was prepared from 1 mg of total RNA
extracted in technical triplicates from 7-d-old Arabidopsis seedlings or from
30-d-oldmaize leaf material from the mature zone (Nelissen et al., 2012) with the
RNeasy Kit (Qiagen); qRT-PCR was run on a LightCycler 480 apparatus (Roche
Diagnostics) with the SYBR Green I Master kit (Roche Diagnostics) or on a
MyIQ cycler with the TaqMan master mix (Bio-Rad). Targets were quantified
with specific primer pairs (Supplemental Table S6). Data were analyzed with
the Biogazelle qBASEplus software (Hellemans et al., 2007) with the translation
initiation factor elongation factor 1-a (EF1A), cyclin-dependent kinase A
(CDKA;1), ubiquitin (UBQ), and heat shock factor 1 (HSF1) as reference genes.
For maize, 18S rRNA (18S) was used as reference gene.

For microarray analyses, 7-d-old seedlings of Arabidopsis Col-0 and
expressing BIN2249-257NFT-GFP were grown vertically on half-strength MS
medium. Total RNA was extracted from shoot material with TRIzol (Invitrogen)
and further purified with the RNeasy Kit (Qiagen). Per array, 200 mg was used to
hybridize the Arabidopsis ATH1 GeneChips (Affymetrix) at the VIB Nucleomics
Core Facility (Leuven, Belgium; www.nucleomics.be) according to the manufac-
turer’s instructions. Raw data were processed with the RMA algorithm (Irizarry
et al., 2003) within BioConductor with the ATH1-121501 chip definitionfile (www.
bioconductor.org) to assign probes to genes, followed by a one-wayANOVAon all
genes in parallel. P values were calculated with GenStat (Payne, 2012) and sub-
sequently transformed into false discovery rates (Storey and Tibshirani, 2003) to
identify differentially expressed genes.

Microscopy

Images of GUS-stained seedlings were taken with a MZ16 binocular microscope
(Leica) and aNikon 198 camera. Seven-day-old Arabidopsis seedlings and tobacco
leaves were analyzed 3 to 4 d after injections with a FluoView1000 (Olympus)
inverted confocal microscope equipped with a 633 water-corrected objective.
Images were captured at 488- and 559-nm laser excitation and 500- to 550-nm and
570- to 670-nm long-pass emission filters for GFP and RFP, respectively. Emission
fluorescence was captured in the frame-scanningmode and images were analyzed
with the FluoView FV1000 software (Olympus). Intensity correlation analysis and
Manders’ overlap coefficient calculations were done as described (Scacchi et al.,
2009) by means of an ImageJ plug-in (http://wwwfacilities.uhnresearch.ca/wcif/
imagej/colour_analysis.htm). For the BiFC experiments, the autofluorescence
background level measured in tobacco leaves coexpressing the cGFP and nGFP
constructs was used to set the GFP signal threshold. Combinations were scored as
positive interactions when the GFP signal was higher than the threshold.

For the morphological studies with TEM, fragments (1–2 mm2) of cotyledons,
hypocotyls, and roots of 7-d-old BIN2249-257NFT-GFP and BIN2249-257RB-GFP,
plants were embedded in Spurr’s resin as described (Betti et al., 2012). For im-
munocytochemical detection, the tissue fragments were infiltrated at 4°C in LR-
White hard grade (LondonResin) and immunolabeledwith an anti-GFP antibody
(AbCam) and secondary colloidal gold-protein A conjugates, PAG10nm (Cell
BiologyDepartment, Utrecht University) as described (Betti et al., 2012). Ultrathin
sections were poststained at 20°C for 40 min in uranyl acetate and 10 min in lead
citrate with an automatic contrasting system (EM AC20; Leica). Grids were
viewed with a JEM-1010 TEM (JEOL) operating at 80 kV.

Protein Extraction, Pull-Down, and Immunoblots

To extract proteins for SDS-PAGE, flash-frozen 7-d-old Arabidopsis seed-
lings or tobacco leaves were ground and homogenized in ice-cold extraction
buffer (50 mM Tris-HCl, pH 7.5, 150 mMNaCl, 1% [v/v] NP-40, 0.1% [v/v] SDS,
0.1% Na-deoxycholate, 5 mM DTT, and Complete protease inhibitor [Roche
Diagnostics]). The homogenate was centrifuged at 14,000g twice for 20 min at
4°C and protein concentration was determined with Quick Start Bradford 13
dye reagent (Bio-Rad). Approximately 60 mg of total protein was separated on a
12% SDS-PAGE gel and transferred to polyvinylidene fluoride membranes (GE
Healthcare). For pull-down experiments, proteins were extracted from flash-
frozen tobacco leaves and immunoprecipitated with GFPTrap-A beads (Chro-
motek) as described (Roux et al., 2011).

For BN-PAGE, total proteins were extracted from flash-frozen 7-d-old
Arabidopsis seedlings or tobacco leaves, separated on Novex gels (Invi-
trogen), and transferred to polyvinylidene fluoride membranes as described
(Xu et al., 2011). For immunodetection, mouse anti-GFP (JL-8, Living Colors;
Clontech), rat anti-HA (Roche Diagnostics), mouse antiperoxidase (PAP;
ab21867; AbCam), or rabbit anti-GWD antibodies (kind gift of Prof. Jeorg
Fettke) were used as primary antibodies at 1:5,000 or 1:1,000 dilutions. Sec-
ondary anti-mouse, anti-rat, or anti-rabbit antibodies (GE Healthcare) were
used at 1:10,000 dilutions. The proteins were detected by ECL (Perkin-Elmer).

FTIR Spectroscopy

FTIR was done on a Tensor 37 FT-IR spectrometer equipped with a BioATR
II cell (Bruker) as described (Xu et al., 2011).

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries, in the Arabidopsis information Resource or in the Maize Genetics and
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Genomics databases under accession numbers: At4g18710 (BIN2/ASKh),
At5g26751 (ASKa), At3g05840 (ASKg), At5g14640 (ASK«), At2g30980 (BIL1/
ASKz), At1g06390 (BIL2/ASKi), At4g00720 (ASKu), At3g61160 (ASKb),
At1g09840 (ASKk), At1g57870 (ASKd), At1g10760, (GWD), At3g06120 (MUTE),
At2g2060 (CLC) and GRMZM2G412611 (ZmGWD).

Supplemental Data

The following materials are available.

Supplemental Figure S1. Subcellular localization of the aggregates.

Supplemental Figure S2. Biochemical analysis of the aggregates.

Supplemental Figure S3. Colocalization analysis.

Supplemental Figure S4. Absence of CLC binding by the BIN2 APR.

Supplemental Figure S5. ASK promoter-GUS expression patterns.

Supplemental Figure S6. Expression analysis of the transgenic lines.

Supplemental Figure S7. TEM analysis.

Supplemental Figure S8. Starch content analysis of the transgenic maize
lines.

Supplemental Figure S9. Full scans of blots.

Supplemental Table S1. TANGO analysis.

Supplemental Table S2. PepMatch results for selected APRs.

Supplemental Table S3. Aggregation constructs design.

Supplemental Table S4. Protein-protein interactions tested by bimolecular
fluorescence complementation (BiFC).

Supplemental Table S5. Microarray gene expression analysis.

Supplemental Table S6. Sequence information.
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Supplemental Figure S1. Subcellular localization of the aggregates. A, Confocal laser scanning microscope 
analysis of Arabidopsis 7-day-old T3 transgenic seedlings expressing BIN2249-257RB-GFP, BIN2249-257NFT-GFP, 
BIN2249-257B-GFP,  BIN2249-257NF-GFP and free GFP. Different organs are visualized; arrows point to perinuclear 
aggregates in cells expressing BIN2249-257RB-GFP, or to insoluble bodies in BIN2249-257B-GFP. Bars, 10 μm. B, 
Subcellular localization of AtGWD534-541NFT-GFP and AtGWD821-829NFT-GFP in leaf mesophyll cells of Arabidop-
sis 7-day-old T3 transgenic seedlings. Arrows point to GFP-labeled chloroplasts. Bars, 10 μm. C, Subcellular 
localization of ZmGWD599-610NFT-YFP, ZmGWD889-897NFT-YFP and ZmGWD1082-1088NFT-YFP in leaf mesophyll cells 
of 14-day-old transgenic segregating T1 maize seedlings. Arrows point to YFP-labeled chloroplasts. Scale bars, 
20 μm. 
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Supplemental Figure S2. Biochemical analysis of the aggregates. A and B, BN-PAGE and immunoblot with 
anti-GFP antibody on protein aggregates induced in N. benthamiana leaves expressing for 3 days different 
BIN2249-257 synthetic aggregating blocks tagged with GFP and compered with wild type (mock), free GFP, 
and Boost (B)-GFP controls (A) and different GWD APRs tagged with either GFP or YFP (B). C, 
Co-immunoprecipitation (co-IP) of GWD using anti-GFP antibody-coupled beads from protein extracts 
derived from tobacco leaves expressing different GWD YFP-tagged APR constructs for 3 days. Left panel: 
Input (BN-PAGE) and IP developed with anti-GFP antibody; Right panel: Input (BN-PAGE) and IP developed 
with anti-GWD antibody. The predicted size for GWD is about 156 kDa. BN-PAGE is run in non-denaturing 
conditions to determine the native masses of protein complexes. 
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Supplemental Figure S3. Colocalization analysis. Colocalization and corresponding intensity correlation analyses of 
ASKα-GFP, ASKγ-GFP, ASKθ-GFP, BIN2-GFP, BIL1-GFP coexpressed with BIN2249-257NFT-RFP in N. benthamiana leaves 
for 3 days (24 h after BIN2249-257NFT-RFP induction with estradiol). Product of the Differences from the Mean (PDM) 
image at the bottom indicates colocalization quantification for the framed area for which the Mander’s coefficient 
is 0.89 for ASKα and ASKγ, 0.82 for BIN2, and 0.86 for BIL1 and BIL2 (where 0.0 and 1.0 is no and perfect colocaliza-
tion, respectively). Arrows point to colocalized cytosolic aggregates. Scale bars, 50 μm. 
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Supplemental Figure S4. Absence of CLC binding by the BIN2 APR. Co-immunoprecipitation (co-IP) of 
BIN2249-257NFT-GFP with CLC-HA when coproduced for 3 days in N. benthamiana leaves. Mock is included as 
negative control; Protein detection in input and IP immunoblots was done with anti-HA and anti-GFP 
antibodies, respectively. The predicted size for CLC is about 42 kDa.
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Supplemental Figure S5. ASK promoter-GUS expression patterns. Promoter-GUS analysis of transgenic Arabidopsis 
plants expressing NLS-GFP-GUS reporters under control of the ASK promoters (pASK). In vitro grown 7-day-old 
Arabidopsis seedlings were used for histochemical GUS analysis. Stained seedlings expressing different 
pASK::NLSGFP-GUS constructs are clustered in four groups, according to the ASK family phylogenetic tree, n>6; n, 
number of seedlings analyzed. 
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Supplemental Figure S6. Expression analysis of the transgenic lines. A, GFP gene expression measured by qRT-
PCR in 7-day-old seedlings from homozygous T3 Arabidopsis transgenic lines expressing BIN2249-257RB-GFP and 
BIN2249-257NFT-GFP compared to GFP control; reference genotype is the lowest GFP-expressing line (from BIN2249-

257NFT-GFP lines) CDKA;1 was used as reference gene. B, qRT-PCR analysis of the expression levels of different 
chaperones (HSC70-1, HSC70-2, HSC70-3, HSP70, HSP90-1 and HSP90-5) in 7-day-old Arabidopsis T3 seedlings as 
in (A). Wild type (Col-0) and bin2/bil1/bil2 triple mutant were used as controls in three independent experi-
ments and UBQ10 and HSF-1 as reference genes. C, GFP gene expression measured by qRT-PCR in 7-day-old 
seedlings from AtGWD534-541NFT-GFP and AtGWD821-829NFT-GFP transgenic T3 Arabidopsis lines compared to GFP 
control; reference genotype is a GFP expressing line; EF1α was used as reference gene. D, YFP gene expression 
measured by qRT-PCR in about 30-day-old mature leaves from ZmGWD599-610NFT-YFP, ZmGWD889-897NFT-YFP and 
ZmGWD1082-1088NFT-YFP transgenic T2 maize lines compared to a reference genotype (the lowest YFP expressing 
line from  ZmGWD889-897NFT-YFP lines); 18S was used as reference gene; n>4; n, for minimum number of T2 
plants checked per each maize line. Only expression data for one plant are shown. Error bars indicate SD. Three 
biological replicas were used for each experiment. All experiments were repeated at least twice with similar 
results.
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Supplemental Figure S7. TEM analysis. Morphological analysis of BIN2249-257APR-expressing plants. TEM micro-
graphs of 7-day-old Arabidopsis seedlings overexpressing BIN2249-257RB-GFP and BIN2249-257NFT -GFP. Wild type 
(Col-0) was used as a control. Both hypocotyl and root cells are shown at low and high magnifications. Framed 
areas are enlarged on the right. Ultra-thin sections were post-stained in uranyl acetate and lead citrate and 
grids were viewed with a JEM-1010 TEM (Jeol) operating at 80 kV. Scale bars are indicated in each picture. 
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Supplemental Figure S8. Starch content analysis of the transgenic maize lines. A, Lugol staining of 10 punches per 
mature leaf from the 7th to the 10th leaf of 8-week-old T2-segregating maize lines expressing ZmGWD599-610NFT-YFP 
and ZmGWD889-897NFT-YFP shown in Fig. 7. Each leaf punch number and leaf number are indicated. The punches 
were taken in the mature leaf zone at about 3 cm distance each. B, Quantification of the staining color intensities 
shown as grey values in pixels, where values from 0 to 250 pixels correspond to color intensities from black to white, 
respectively. 
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Supplemental Figure S9. Full scans of immunoblots. Asterisks indicate the bands shown in the figures.



Supplemental Table S4. Protein-protein interactions tested by Bimolecular Fluorescent 

Complementation (BiFC).  
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Supplemental Table S6. Sequence information 

A. SABs nucleotide sequences 

BIN2249-257B  

APR CAACTTGTTGAAATTATTAAGGTTCTT 

Linker AAACCTGCTGGAGCTGCTAAACCTGGAGCTGCTGGA 

Booster 
CAGTGGCAGAACTCTACCCTCATCGTTCTCCAGAACTCTACCGTGATTTTC
GAACAGAACTCTACCGTTATCTTCGAACAGAAC 

  

BIN2249-257RB  

APR AGACAACTTGTTGAAATTATTAAGGTTCTTAGA 

Linker AAACCTGCTGGAGCTGCTAAACCTGGAGCTGCTGGA 

Booster 
CAGTGGCAGAACTCTACCCTCATCGTTCTCCAGAACTCTACCGTGATTTTC
GAACAGAACTCTACCGTTATCTTCGAACAGAAC 

  

BIN2249-257NF  

APR 
ATGGCTGATGATAAAGAGGAAAATGCTGTTGATCAATTGGTTGAAATTATT
AAAGTTCTTGGAACTCCTACTAGAGAAGAG 

Linker GCTGGTTCTCCTAAAGGAGCTCCTGCTGCTAAAGGATCTGGAGCT 

  

BIN2P249-257NFT  

APR 
ATGGCTGATGATAAAGAGGAAAATGCTGTTGATCAATTGCCTGAAATTCCT
AAAGTTCTTGGAACTCCTACTAGAGAAGAG 

Linker GCTGGTTCTCCTAAAGGAGCTCCTGCTGCTAAAGGATCTGGAGCT 

  

AtGWD534-541NFT  

TP 

ATGGCTTCTATGATTTCTTCTTCTGCTGTTACTACTGTTTCTAGAGCTTCTA
GAGGACAATCTGCTGCTGTTGCTCCTTTTGGAGGACTTAAGTCTATGACT
GGATTTCCTGTTAAGAAGGTTAATACTGATATTACTTCTATTACTTCTAATG
GAGGAAGAGTTAAGTGT 

APR 
GAAAATGCTGTTGATTTTGCTGGAATTCTTGTTTGGATGGGAACTCCTACT
AGAGAAGAA 

Linker GCTGGATCTCCTAAGGGAGCTCCTGCTGCTAAGGGATCTGGAGCT 

  

AtGWD821-829NFT  

TP 

ATGGCTTCTATGATTTCTTCTTCTGCTGTTACTACTGTTTCTAGAGCTTCTA
GAGGACAATCTGCTGCTGTTGCTCCTTTTGGAGGACTTAAGTCTATGACT
GGATTTCCTGTTAAGAAGGTTAATACTGATATTACTTCTATTACTTCTAATG
GAGGAAGAGTTAAGTGT 

APR 
GAAAATGCTGTTGATATTATGTATTTTATTTCTCTTGTTCTTGGAACTCCTA
CTAGAGAAGAA 

Linker GCTGGATCTCCTAAGGGAGCTCCTGCTGCTAAGGGATCTGGAGCT 

  

AtGWD1227-

1234NFT 
 

TP 

ATGGCTTCTATGATTTCTTCTTCTGCTGTTACTACTGTTTCTAGAGCTTCTA
GAGGACAATCTGCTGCTGTTGCTCCTTTTGGAGGACTTAAGTCTATGACT
GGATTTCCTGTTAAGAAGGTTAATACTGATATTACTTCTATTACTTCTAATG
GAGGAAGAGTTAAGTGT 

APR 
GAAAATGCTGTTGATTATCTTTGTATGGCTGTTCTTGTTACTCCTACTAGA
GAAGAA 

Linker GCTGGATCTCCTAAGGGAGCTCCTGCTGCTAAGGGATCTGGAGCT 

  

ZmGWD599-

610NFT 
 

TP 
ATGGCCAGCATGATCAGCAGCAGCGCCGTGACCACCGTGAGCAGGGCC
AGCAGGGGCCAGAGCGCCGCCGTGGCCCCGTTCGGCGGCCTGAAGAGC



ATGACCGGCTTCCCGGTGAAGAAGGTGAACACCGACATCACCAGCATCA
CCAGCAACGGCGGCAGGGTGAAGTGC 

APR 
GAGAACGCCGTGGACCTGCTGGGCATCGTGGGCCTGTTCGTGTGGATCA
GGGGCACCCCGACCAGGGAGGAG 

Linker GCCGGCAGCCCGAAGGGCGCCCCGGCCGCCAAGGGCAGCGGCGCC 

  

ZmGWD889-

897NFT 
 

TP 

ATGGCCAGCATGATCAGCAGCAGCGCCGTGACCACCGTGAGCAGGGCC
AGCAGGGGCCAGAGCGCCGCCGTGGCCCCGTTCGGCGGCCTGAAGAGC
ATGACCGGCTTCCCGGTGAAGAAGGTGAACACCGACATCACCAGCATCA
CCAGCAACGGCGGCAGGGTGAAGTGC 

APR 
GAGAACGCCGTGGACATCATGTACTTCATCAGCCTGGTGCTGGGCACCC
CGACCAGGGAGGAG 

Linker GCCGGCAGCCCGAAGGGCGCCCCGGCCGCCAAGGGCAGCGGCGCC 

  

ZmGWD1082-

1088NFT 
 

TP 

ATGGCCAGCATGATCAGCAGCAGCGCCGTGACCACCGTGAGCAGGGCC
AGCAGGGGCCAGAGCGCCGCCGTGGCCCCGTTCGGCGGCCTGAAGAGC
ATGACCGGCTTCCCGGTGAAGAAGGTGAACACCGACATCACCAGCATCA
CCAGCAACGGCGGCAGGGTGAAGTGC 

APR 
GAGAACGCCGTGGACGTGCTGTTCGCCACCTGCTTCGGCACCCCGACCA
GGGAGGAG 

Linker GCCGGCAGCCCGAAGGGCGCCCCGGCCGCCAAGGGCAGCGGCGCC 

  

 

B. List of primers 

Name Sequence Purpose 

attB1-APR249R-
Boost_F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAGACAAC
TTGTTGAAATTATTAAGGTTCTTAGAAAACCTGCTGGAGCTG
CTAA 

cloning 

attB1-APR249-
Boost_F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCAACTTG
TTGAAATTATTAAGGTTCTTAAACCTGCTGGAGCTGCTAA 

cloning 

APR249R-Boost-
attB2_R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCATCTAAGAA
CCTTAATAATTTCAACAAGTTGTCTTCCAGCAGCTCCAGGTT
TAG 

cloning 

APR249-Boost-
attB2_R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAAGAACCT
TAATAATTTCAACAAGTTGTCCAGCAGCTCCAGGTTTAG 

cloning 

Boost-attB1_F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAAACCTG
CTGGAGCTGCTAAACC 

cloning 

Boost-attB2_R 
GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACTTGTACA
GCTCGTCCATGCC 

cloning 

ASKγ_prom4-
1_FW 

GGGGACAACTTTGTATAGAAAAGTTGCTCGTAGCTCAGTTG
GTTAGAG 

cloning 

ASKγ_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCCCCAAGATTAAAACA
GAAGA 

cloning 

ASKθ_prom4-
1_FW 

GGGGACAACTTTGTATAGAAAAGTTGCTGGGCCTACAACAAT
ATCATGT 

cloning 

ASKθ_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCCTTCGCTTTATTCAC
CAACC 

cloning 

ASKε_prom4-
1_FW 

GGGGACAACTTTGTATAGAAAAGTTGCTCTGTTTATTGTTATA
GAGAG 

cloning 

ASKε_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCATGTATTCAAGATCT
TTAATT 

cloning 

ASKα_prom4-
1_FW 

GGGGACAACTTTGTATAGAAAAGTTGCTGACATGTTTTCGTC
TAAGATT 

cloning 



ASKα_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCTTTTCAGGCTACAAA
ACTCT 

cloning 

ASKβ_prom4-
1_F 

GGGGACAACTTTGTATAGAAAAGTTGCTAACAAAGAATGTTG
TAATTT 

cloning 

ASKβ_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCCGTTTTTTTCTTCTTA
AAAAAGC 

cloning 

ASKδ_prom4-
1_F 

GGGGACAACTTTGTATAGAAAAGTTGCTCATGAGCCATAACC
GAGAAA 

cloning 

ASKδ_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCGGTGGTGGTTGTTC
GGAAGA 

cloning 

BIL1_prom4-1_F 
GGGGACAACTTTGTATAGAAAAGTTGCTATATCATGTTAAAA
GAAAATTTC 

cloning 

BIL1_prom4-1_R 
GGGGACTGCTTTTTTGTACAAACTTGCGTGCTTTTACAGCTC
TAACT 

cloning 

BIN2_prom4-
1_2_F 

GGGGACAACTTTGTATAGAAAAGTTGCTCATTTCTTTTTGCC
GACGGTTG 

cloning 

BIN2_prom4-
1_2_R 

GGGGACTGCTTTTTTGTACAAACTTGCGGCGATAGAGACAC
AGAGAGGAG 

cloning 

BIL2_prom4-1_F 
GGGGACAACTTTGTATAGAAAAGTTGCTATTTTACTGGTATC
TTCTTT 

cloning 

BIL2_prom4-1_R 
GGGGACTGCTTTTTTGTACAAACTTGCGTGCTTTTTTACTCTT
TTCT 

cloning 

ASKκ_prom4-
1_F 

GGGGACAACTTTGTATAGAAAAGTTGCTTAAGTACGTTCATT
ATCATG 

cloning 

ASKκ_prom4-
1_R 

GGGGACTGCTTTTTTGTACAAACTTGCGATATATATTCAGAA
GATAAC 

cloning 

attB1F_ASKα_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCGTCAG
TGGGTATAGC 

cloning 

attB2R_ASKα_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTACAAACCGAGCC
AAGGACACT 

cloning 

attB1F_ASKγ_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCCTCGG
TGGGCATAGA 

cloning 

attB2R_ASKγ_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTACAAACTGAGCC
ACGGACATTG 

cloning 

attB1F_ASKε_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCTTCTG
TGGGAACATT 

cloning 

attB2R_ASKε_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTAGAGAGCGAGG
AAGGAACATT 

cloning 

attB1F_BIL2_CD
S 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCCTCAT
TACCATTGGGGCCTCAGCCTCATGCT 

cloning 

attB2R_BIL2_CD
S 

GGGGACCACTTTGTACAAGAAAGCTGGGTAACTGTTTTGTAA
TCCTGTGCTCATTTGTCGTCTC 

cloning 

attB1F_BIL1_CD
S 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGACTTCGA
TACCATTGGG 

cloning 

attB2R_BIL1_CD
S 

GGGGACCACTTTGTACAAGAAAGCTGGGTAGGGTCCAGCTT
GAAATGGAA 

cloning 

attB1F_ASKθ_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAACGTGA
TGCGTCGTCT 

cloning 

attB2R_ASKθ_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTAAGAGCTACTTC
CCGTTCCCT 

cloning 

attB1F_BIN2_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCTGATG
ATAAGGAGAT 

cloning 

attB2R_BIN2_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTAAGTTCCAGATT
GATTCAAGA 

cloning 

attB2R_BIN2_C
DS_stop 

GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGTTCCAG
ATTGATTCAAGA 

cloning 

attB1F_ASKβ_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAATGTGG
TGCGGAGATT 

cloning 



attB2R_ASKβ_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTATTTCCTTGCAT
GCTCAG 

cloning 

attB1F_ASKκ_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCATCCT
CTGGACTGGG 

cloning 

attB2R_ASKκ_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTACGAATGCAAAG
CCATGA 

cloning 

attB1F_ASKδ_C
DS 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGAATCTC
ATCTGGGAAA 

cloning 

attB2R_ASKδ_C
DS 

GGGGACCACTTTGTACAAGAAAGCTGGGTACGAGTGTAATG
CCATGA 

cloning 

ASKα_stop_attb
1F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCGTCAG
TGGGTATAGC 

cloning 

ASKα_stop_attb
2R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACAAACCGA
GCCAAGGAC 

cloning 

ASKγ_stop_attb
1F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCCTCGG
TGGGCATAGA 

cloning 

ASKγ_stop_attb
2R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACAAACTGA
GCCACGGAC 

cloning 

ASKε_stop_attb1
F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCTTCTG
TGGGAACATT 

cloning 

ASKε_stop_attb2
R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGAGAGCGA
GGAAGGAAC 

cloning 

BIL1_stop_attb1
F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGACTTCGA
TACCATTGGG 

cloning 

BIL1_stop_attb2
R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGGGTCCAG
CTTGAAATG 

cloning 

BIL2_stop_attb1
F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCCTCAT
TACCATTGGG 

cloning 

BIL2_stop_attb2
R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAACTGTTTTG
TAATCCTG 

cloning 

ASKθ_stop_attb
1F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAACGTGA
TGCGTCGTCT 

cloning 

ASKθ_stop_attb
2R 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAAGAGCTAC
TTCCCGTTC 

cloning 

p35S_F CCACTATCCTTCGCAAGACCC sequencing 

GFP_R GTTTACGTCGCCGTCCAGCT sequencing 

bri1_F TCAAGCTTCACCATCTCAGTCT genotyping 

bri1_R GCACCGGAGATTGAATTCGC genotyping 

DWF4_F GTGATCTCAGCCGTACATTTGGA qPCR 

DWF4_R CACGTCGAAAAACTACCACTTCCT qPCR 

CPD_F GAATGGAGTGATTACAAGTC qPCR 

CPD_R GTGAACACATTAGAAGGGCCTG qPCR 

BZR1_F CCTCTACATTCTTCCCTTTCCTCAG qPCR 

BZR1_R GCTTAGCGATAGATTCCCAGTTAGG qPCR 

GFP_F GAAGCGCGATCACATGGT qPCR 

GFP_R CCATGCCGAGAGTGATCC qPCR 

ZmYFP_F GAGCTGAAGGGCATCGACTT qPCR 

ZmYFP_R TTCTGCTTGTCGGCCATGAT qPCR 

CDKA;1_F ATGGCGTGGGGTAACTTCTCTA qPCR 

CDKA;1_R TTGGTCGGATCCATTAACAGCA qPCR 

Zm18S_F ACCTTACCAGCCCTTGACATATG  qPCR 

Zm18S_R GACTTGACCAAACATCTCACGAC qPCR 

EF1A_F CTGGAGGTTTTGAGGCTGGTAT qPCR 



EF1AF_R CCAAGGCTGAAAGCAAGAAGA qPCR 

AT-HSC70-
1/AT3G09440_F 

GCT ATT CTC AGC GGT GAA GG qPCR 

AT-HSC70-
1/AT3G09440_R 

TTC TCG TCT TGG ATG GTG TTC qPCR 

AT-HSC70-
1/AT3G09440_P
robe 

/56-FAM/TC TTC GGA C/Zen/T TGT ACT TCT CAG CCT 
CT/3IABkFQ/ 

qPCR 

AT-HSC70-
2/AT5G02490_F 

GAA ACA GAA CCA CTC CCT CG qPCR 

AT-HSC70-
2/AT5G02490_R 

CCA ATC AAC CTC TTT GCA TCG qPCR 

AT-HSC70-
2/AT5G02490_P
robe 

/56-FAM/AG AAC CAA G/Zen/T CGC CAT GAA CCC 
T/3IABkFQ/ 

qPCR 

AT-HSC70-
3/AT5G02500_F 

AAC AGA ACC ACA CCG TCT TAC qPCR 

AT-HSC70-
3/AT5G02500_R 

ACC AAT CAA CCT CTT CGC ATC qPCR 

AT-HSC70-
3/AT5G02500_P
robe 

/56-FAM/CG TCA CCA A/Zen/T CAA CCG TTC GCT ATC 
A/3IABkFQ/ 

qPCR 

AT-
HSP70/AT3G12
580_F 

TGA CTC TTA TCC GCT TGA ACA G qPCR 

AT-
HSP70/AT3G12
580_R 

TCC TAC GTT GCT TTC ACT GAC qPCR 

AT-
HSP70/AT3G12
580_Probe 

/56-FAM/TC GCC ATG A/Zen/A CCC TAC CAA CAC 
C/3IABkFQ/ 

qPCR 

AT-HSP90-
1/AT5G52640_F 

GTG GTT CCT TCA CTG TCA CTA G qPCR 

AT-HSP90-
1/AT5G52640_R 

TTC ACC AAG TCT TTG AGT CTC C qPCR 

AT-HSP90-
1/AT5G52640_P
robe 

/56-FAM/TC CTC CAA G/Zen/T ATT CAA GCT GAT CGT CCT 
/3IABkFQ/ 

qPCR 

AT-HSP90-
5/AT2G04030_F 

GAA CTC AAC CTC ACC CTC AG qPCR 

AT-HSP90-
5/AT2G04030_R 

ACT AGC CAA CGA GAC CAA AC qPCR 

AT-HSP90-
5/AT2G04030_P
robe 

/56-FAM/TC CAC TTG C/Zen/T CAC ACA CAC TTC ACA 
/3IABkFQ/ 

qPCR 

AT-
UBQ10/AT4G05
320 _F 

CTC CTT ATC CTG GAT CTT GGC qPCR 

AT-
UBQ10/AT4G05
320 _R 

TTT CTC TCA ATT CTC TCT ACC GTG qPCR 

AT-
UBQ10/AT4G05
320 _Probe 

/56-FAM/TC GAG GGT G/Zen/A TTG TCT TTC CGG 
TG/3IABkFQ/ 

qPCR 

AT-
HSF1/AT4G1775
0_F 

CCT TCA TTA GCA AAT TCC CAT CG qPCR 



AT-
HSF1/AT4G1775
0_R 

TCA TTG TTT GGG ATC CAC CG qPCR 

AT-
HSF1/AT4G1775
0_Probe 

/56-FAM/CA ATT TCT C/Zen/C AGC TTT GTT CGC CAG 
T/3IABkFQ/ 

qPCR 

pPEPC_end GGTTCCGTTGCGGTTA genotyping 

pT35S.1 ACCCTAATTCCCTTATCTGG genotyping 

 


