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Abstract
Background: Intra-cellular information exchange, propelled by cascades of interacting signalling
proteins, is essential for the proper functioning and survival of cells. Now that the interactome of
several organisms is being mapped and several structural mechanisms of cooperativity at the
molecular level in proteins have been elucidated, the formalization of this fundamental quantity, i.e.
information, in these very diverse biological contexts becomes feasible.

Results: We show here that Shannon's mutual information quantifies information in biological
system and more specifically the cooperativity inherent to the assembly of macromolecular
complexes. We show how protein complexes can be considered as particular instances of noisy
communication channels. Further we show, using a portion of the p27 regulatory pathway, how
classical equilibrium thermodynamic quantities such as binding affinities and chemical potentials can
be used to quantify information exchange but also to determine engineering properties such as
channel noise and channel capacity. As such, this information measure identifies and quantifies
those protein concentrations that render the biochemical system most effective in switching
between the active and inactive state of the intracellular process.

Conclusion: The proposed framework provides a new and original approach to analyse the effects
of cooperativity in the assembly of macromolecular complexes. It shows the conditions, provided
by the protein concentrations, for which a particular system acts most effectively, i.e. exchanges
the most information. As such this framework opens the possibility of grasping biological qualities
such as system sensitivity, robustness or plasticity directly in terms of their effect on information
exchange. Although these parameters might also be derived using classical thermodynamic
parameters, a recasting of biological signalling in terms of information exchange offers an alternative
framework for visualising network cooperativity that might in some cases be more intuitive.
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Background
A cellular pathway, whether enzymatic or signal transduc-
ing, can in a simplistic manner be described as a causal
relationship between an environmental signal (such as
nutrients, osmolytes or hormones) and a cellular response
(generally through gene regulation). Cellular signals are
mediated through a series of successive protein-protein
interactions that bridge spatial and topological bounda-
ries (between the plasma membrane and cell nucleus for
example) and that allow for crosstalk between different
pathways [1,2]. This protein-based modular strategy
achieves integrated cellular responses that are both spe-
cific and at the same time tuned to global environmental
and cellular requirements. This specificity is organized
through the cooperativity between the members of the
complex and the introduction of temporal and spatial
constraints on the expression levels of the different mem-
bers of the signalling pathways. Over- or under-expres-
sion, for instance, of the signalling components may have
disastrous effects on the cellular phenotype, e.g. the devel-
opment of cancer.

Cooperativity is a thermodynamic concept that is used in
different biochemical contexts [3-6]. Here this notion
refers to the formation of multi-protein complexes with

non-additive free-energies of assembly, i.e. complexes for
which the stability of the final assembly is higher than the
sum of all individual binary association [6]. A classic way
to study cooperativity is by the analysis of a thermody-
namic cycle [7]. Consider an assembly process that
involves three proteins A, B and C that together form a ter-
nary complex ABC, where B acts as an adaptor protein
providing a separate binding surface for each of the two
other molecules (see left panel Figure 1). Two alternative
routes can then create the complex ABC: Either the binary
complex AB is formed first and C binds afterwards or first
the proteins B and C are joined before A is added. Every
pair-wise reaction between the proteins in isolation and
between individual proteins and partially formed com-
plexes is annotated by a rate of dissociation (Kd), specify-
ing the likelihood of that particular assembly/disassembly
step. Here there are four dissociation constants: KdA-B, KdB-

C, KdAB-C and KdA-BC, where the latter dissociation con-
stants refer to the dissociation of C from ABC and A from
ABC respectively. Since it is known that the overall ther-
modynamics and free energies for both routes to construct
ABC is the same around the cycle (KdA-B KdAB-C = KdB-C KdA-

BC), one can simply determine the cooperativity of the sys-
tem by comparing the energy changes when one of the
proteins is already bound or not [6]. For instance, when

Abstract ternary protein complexFigure 1
Abstract ternary protein complex. (A) The protein B in this abstract complex acts as a communication pathway between 
the two other proteins A and C. Binding protein A sends information over the pathway λ to the binding site of protein C, facil-
itating the binding of protein C. (B) Like a communication channel, the ternary complex can be described by a number of con-
ditional probabilities. The conditional probabilities P(C = 0|A = 0) and P(C = 1|A = 1), describe the accuracy of the 
communication channel, i.e. the likelihood that a given output signal corresponds to the appropriate input signal. A second set 
of probabilities, P(C = 1|A = 0) and P(C = 0|A = 1), describes the intrinsic noise of the communication channel, i.e. the likeli-
hood that a given input signal is not correctly conveyed.
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the likelihood of binding of C is enhanced when A is
already bound to B, then there is positive cooperativity,
resulting in bigger gain in energy when comparing it with
the same reaction without the presence of A. When the
binding of C to B is inhibited by the presence of A, then
there is negative or anticooperativity, producing in turn a
decrease in the free energy when comparing it to the proc-
ess without A. When the presence of A in the complex
does not influence the binding affinity of C, then there is
no cooperativity or independent binding.

Even though this scheme identifies the presence and type
of cooperation in the assembly process, it does not shed
light on the molecular concentrations, possibly reflecting
the intracellular conditions, required for efficient regula-
tion or coordination between a pathway's active (ABC)
and inactive (B) state. Here we provide an information
theoretical method that, in the same spirit as the Hill and
Scatchard plots [8], identifies and quantifies cooperativity
in macromolecular assemblies and visualizes for a spec-
trum of concentrations when optimal coordination is
obtained for the given experimental data. Different from
those established methods, our approach goes beyond
multiple bindings of the same ligand to a homogeneous
oligomer (as in the binding of oxygen to haemoglobin
[9]): We consider here the construction of heterogeneous
protein assemblies mediated by multiple binding surfaces
on adaptor proteins. As such, and as far as we are aware,
this method provides an original and novel approach for
the analysis of the cooperativity in macromolecular com-
plexes that are part of some signalling cascade.

Results and discussion
General description of the approach
In analogy with cellular pathways, each protein in a cellu-
lar network can be considered as an element receiving an
input signal (from upstream ligands) and generating an
output signal (towards downstream effectors). Hence, we
can reinterpret the ternary protein complex ABC as an
instance of communication over a noisy channel [10,11],
where protein B provides the communication channel
through which information is exchanged between
upstream ligand A and downstream effector C (See left
panel in Figure 1). Like all noisy communication channels
[10,11] the protein complex ABC is determined by a set of
conditional probabilities relating input to output (See
right panel in Figure 1). A first set of probabilities, P(C =
0|A = 0) and P(C = 1|A = 1), describe the accuracy of the
communication channel, i.e. the likelihood that a given
output signal corresponds to the appropriate input signal.
In other words, if no input signal is given, meaning A is
not bound to B (A = 0) then C should also be not bound
to B (C = 0), and vice versa. A second set of probabilities,
P(C = 1|A = 0) and P(C = 0|A = 1), describes the intrinsic
noise of the communication channel, i.e. the likelihood

that a given input signal is not correctly conveyed. Thus
inappropriate transmission occurs when either C is bound
to B (C = 1) even though A was not bound before (A = 0)
or when A is bound (A = 1) and C is not (C = 0). These
probabilities describe a partition of the initial protein
concentrations [A]0, [B]0 and [C]0 over all possible associ-
ation states of the system including A, B and C in isola-
tion, the binary complexes AB and BC and the ternary
complex ABC. Next to the total concentrations [A]0, [B]0
and [C]0, the steady state that is defined by this partition-
ing depends on the different dissociation constants
including KdA-B, KdB-C, KdAB-C and KdA-BC. Given the steady
state concentrations, the individual and conditional prob-
abilities may be obtained (see Equation (1) in Methods).
These probabilities are necessary to derive Shannon's
entropy (H(A), H(C), ...) and subsequently the mutual
information I(A;C) exchanged between A and C over
channel B (see Equation (3) in Methods).

We quantify the degree of cooperativity of the system by
the amount of information that is exchanged between the
elements of the complex. In terms of the protein concen-
trations, this mutual information expresses how well the
ratio of the steady-state concentrations of the ternary com-
plex ABC and the free adaptor protein B are balanced
while at the same time requiring the concentration of
both binary complexes (AB and BC) to be as low as possi-
ble. So, on the one hand, low information exchange cor-
responds to an equilibrium situation where the protein
(B) and complex concentrations (ABC) are out of balance
or where to many intermediate complexes are present
making it hard for the biological system to perform its
function. On the other hand, high amounts of informa-
tion exchange correspond to an optimized system where
all members achieve the required coordination to switch
efficiently between active and inactive states of the cellular
process. Note, that the approach described here for a ter-
nary protein complex can be further generalised to
describe communication channels having multiple inputs
or outputs (i.e. to study signal integrators or differentia-
tors). In that case the mutual information between the dif-
ferent components needs to be deduced by a multivariate
approach (see Methods) [11,12]. It is also important to
note that the mutual information does not change from
swapping the input with the output components, i.e.
I(A;C) = I(C;A).

Biophysical model system
To clarify the biophysical meaning and illustrate our
method we here describe the information exchange over a
part of the p27 regulatory pathway. The p27 pathway con-
trols the degradation of the cyclin-dependent kinase 2
(Cdk2) inhibitor p27 [13-16] thereby playing an impor-
tant role in cell cycle progression [17,18]. In particular,
phosphorylation of p27 triggers Cks1-mediated binding
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of p27 to Skp2. As Skp2 is part of the SCFSkp2 ubiquitin
ligase this results in p27 degradation and cell cycle pro-
gression. In a recent study [19], the assembling mecha-
nism for part of the SCFSkp2 multiprotein complex has
been analyzed in order to understand 1) how and in
which order the different units assemble and 2) how the
specific order of this process influences the mutual affini-
ties between the components and intermediately formed
complexes. Seeliger et al. [19] showed that the Skp2-Cks1
complex increases the affinity of Cks1 for the Cdk2 inhib-
itor p27 a 100-fold. Additional inclusion of Cdk2
increases the affinity for p27 even more. Through muta-
tional analysis the authors also showed long-range cou-
pling between distant functional sites in Cks1, making it a
principal example how adaptor proteins can play a central
role in tightly controlling the assembly of a critical com-
plex. As a consequence, it forms a biophysically meaning-
ful case to investigate the communication between the
different binding sites of the Cks1 structure in terms of
Shannon's information theory (see Methods). Note here
that Shannon's information theory can also be used to
derive the communication pathway in Cks1. We recently
demonstrated this lower-level analysis for the SH2
domain of Fyn [20]. Given the appropriate structural data,
the same analysis could occur which should reveal the
communication between the three binding sites [21].

The biophysical data obtained in [19], i.e. the dissociation
constants, is used to perform the current analysis, (see also
Table 1 for the data). The thermodynamic cycle including
the adaptor protein Cks1 (acting as component B) [21],
the proteins Skp2 (acting as component C) and p27 (act-
ing as component A) produced from this data shows that
both paths around the cycle are cooperative: Having Skp2
bound to Cks1 makes it easier for p27 to bind and vice
versa. In a first step, we focus on the thermodynamic cycle
for the formation of this ternary complex p27-Cks1-Skp2
(see Methods). Since in vivo p27 is bound to Cdk2, we will
in a second step consider the quaternary complex Cdk2-
p27-Cks1-Skp2. In that case two signals (Cdk2 and p27)
are integrated and conveyed over the communication
channel Cks1. As the mutual binding affinities of this sys-
tem, i.e. KdSkp2-Cks1, KdCks1-p27, KdSkp2-Cks1p27 and KdSkp2Cks1-

p27, have been determined experimentally (see [19] and
Table 1), we can quantify the information exchange
between the input and output components of the system
and study the transmission efficiency, meaning under
which conditions we observe the highest degree of coop-
erativity, of the adaptor protein Cks1 under a wide range
of chemical potentials (see Methods). Note that only one
of the dissociation constants, KdSkp2-Cks1p27 or KdSkp2Cks1-p27,
is required for the derivation of the different steady-state
concentrations (see Methods).

How much information is exchanged in the p27-Cks1-Skp2 
complex?
Figure 2 (left panel) shows the phase-space of the degree
of cooperativity of the ternary p27-Cks1-Skp2 complex as
it represents the Cks1-mediated information exchange
between p27 and Skp2 over a range of concentrations var-
ying between 0.0 μM and 50 μM for p27 and 0.0 μM and
0.2 μM for Skp2, whereas the concentration of Cks1 has
been kept constant at 0.1 μM. For each concentration dis-
tribution {[p27], [Skp2]} (Both ranges for Skp2 and phos-
phorylated p27 were discretized into 100 values each) the
mutual information is calculated (see Methods), produc-
ing a matrix of information values. As argued earlier,
mutual information expresses to what extent the proteins
in the assembly properly coordinate their actions to
achieve efficient switching between active and inactive
states. Concretely when information about the associa-
tion between Skp2 and Cks1 proteins is independent of
the association of p27 and Cks1 proteins, then mutual
information I(Skp2, p27) equals 0 bits (no cooperativity),
turning the matrices in Figure 2 completely blue when this
is the case. Conversely, when the association of all Skp2
proteins with Cks1 uniquely defines the associations of
phosphorylated p27 then mutual information I(Skp2,
p27) equals 1 bit (full cooperativity). This would mean

Table 1: Dissociation constants between Cks1 and the different 
subunits. 

Protein or complex Binding partner Kd (μM)

Cks1 p27 70

Cks1-Skp2 p27 0.47

Cks1-Cdk2 p27 120

Cks1-Cdk2-Skp2 p27 0.15

Cks1 Skp2 0.014

Cks1-Cdk2 Skp2 0.07

Cks1-p27 Skp2 0.0001

Cks1-Cdk2-p27 Skp2 0.0001

Cks1 Cdk2 1.5

Cks1-Skp2 Cdk2 8

Cks1-p27 Cdk2 3

Cks1-Skp2-p27 Cdk2 2.6

Dissociation constants in bold were derived experimentally. The 
remaining values were obtained through the thermodynamic cycles 
[19].
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that no binary assemblies are present, which is for most
biochemical equilibria unlikely due to the underlying
kinetics. Thus the intracellular process needs to find a
good balance between the degree of cooperativity and the
effectiveness of the switching mechanism.

As can be seen in Figure 2, only a small part of the phase
space displays some or significant degree of cooperativity.
In the cooperative regime the assembly of Cks1 to p27
will be conditional on the concentration of Skp2 and vice
versa. In other words, binding of p27 to Cks1 and recruit-
ment to the SCFSkp2 ubiquitin ligase machinery will be
mutually dependent events. Outside of this regime the
assembly of these elements is still possible, but as under
these conditions the fraction of bound protein is no
longer influenced by changes in the concentration of the
other, information exchange becomes very noisy. Moreo-
ver, from the difference in the extent for which each pro-
tein, Skp2 and p27, shows information exchange one can
derive that it is Skp2 that forms the natural input signal for
this regulatory process: It controls the switching in an
effective manner.

How does channel concentration affect robustness of the 
system?
Interestingly, although the area of maximum cooperativ-
ity of p27-Cks1-Skp2 represents only a minor part of the

phase space, it displays a relatively slow decline for
increasing p27 concentration (see also Figure 3. left
panel). This relatively broad, although suboptimal
response curve, gives a measure for the robustness of the
system to extrinsic noise due to fluctuations in input or
output ligand concentrations. This is not the case for
Skp2. As can be seen Figure 3 (right panel), the responsive
area for Skp2 is very tightly defined (given 0.1 μM concen-
tration for Cks1). Hence variations in Skp2 strongly influ-
ence the responsiveness of the biochemical system.

The robustness towards the Skp2 concentration increases
as the concentration of Cks1 increases, as is shown in Fig-
ure 4. Increasing the concentration of Cks1 from 0.01 μM
and 0.3 μM results in an increase of the cooperative area,
particularly for the concentration of Skp2. This effect of
Cks1 on the concentration of Skp2 makes sense biochem-
ically since it is know that the expression of Cks1 alter-
nates in parallel with the concentration of Skp2 when
passing through the cell cycle [21]. Even though the area
for Skp2 increases, the concentrations of p27 for which
cooperativity is high remains the same. Moreover, even
though the actual concentration for Skp2 changes, the
maximum mutual information, or the capacity, remains
always the same for this ternary system (see Figure 4).

Phase-space of cooperativity for the Cks1 adaptor proteinFigure 2
Phase-space of cooperativity for the Cks1 adaptor protein. Both contour diagrams show the mutual information for 
different concentrations of Cks1, Skp2 and phosphorylated p27 (left panel) and for different concentrations of Cks1, Skp2, 
Cdk2 and phosphorylated p27 (right panel). In both panels, the concentration of Cks1 is kept fixed (0.1 μM) and the concen-
tration of Skp2 and p27 vary between 0.0–0.2 μM and 0.0–50 μM respectively. In the right panel, Cdk2 varies together with 
p27, meaning that we assumed [p27] = [Cdk2] for all combinations. As can be observed, the signal between Skp2 and phospho-
rylated p27 is clearly constrained by the input concentrations. Moreover, when adding Cdk2, as shown in the right plot, the sig-
nal is reinforced.
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How much information is exchanged in the Cdk2-p27-
Cks1-Skp2 complex?
The right panel of Figure 2 shows the cooperativity profile
of the quaternary complex Cdk2-p27-Cks1-Skp2. In this
case both Cdk2 and p27, which are associated with a 1:1
stochiometry can be considered as two input signals,
which are combined over the Cks1 adaptor to elicit Skp2
binding. The multivariate approach to mutual informa-
tion [11,12] (see Methods) makes it possible to analyse
the different components that define the information
flow in this quaternary complex. As can be expected, the
integration of the two signals gives rise to an increased
cooperativity of the system, but also to a broader maxi-
mum indicating a more robust system response (see Fig-
ure 2, right panel). In addition, we can deconstruct the

transmission within the complex Cdk2-p27-Cks1-Skp2
into the mutual information between Skp2 and p27 (Fig-
ure 5, top left panel), Skp2 and Cdk2 (Figure 5, top right
panel) and the effect of integrating both signals, called the
interaction information A(Skp2, Cdk2, p27) [12] (Figure 5,
bottom left panel). Even though the majority of the com-
munication occurs between Skp2 and p27, the integration
of these two signals, A (see Methods), shows how the con-
centration of Cdk2 affects the communication between
Skp2 and p27: First for low initial concentrations of both
proteins, knowledge about Cdk2 inhibits slightly the
information exchange over the cooperative channel. As
the concentration of Skp2 increases, the transmission is
amplified resulting in the higher capacity that is shown in
the right panel of the Figure 2. Consequently, the contour

Analysis of information exchange at Cks1 capacityFigure 3
Analysis of information exchange at Cks1 capacity. In both plots, the mutual information (green line) is shown. In the 
left panel, it is visualized for optimal [Cks1]* and [Skp2]* and varying [p27]. In the right panel, the same information is shown 
for optimal [Cks1]* and [p27]* and varying [Skp2]. In both plots, the blue striped line marks the concentrations of p27 (left 
panel) and of Skp2 (right panel) where the channel's capacity is obtained. In the left panel, the error probabilities f and g are 
added and are shown to be equal when the optimal value of mutual information is achieved. Both error probabilities intersect 
around f = g = 0.075 for [p27] ≈ 5.79 μM. In the right panel, the probabilities that Skp2 is not bound to Cks1 and p27 is bound 
to Cks1 were added.
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Cooperativity phase-space for other concentrations of Cks1Figure 4
Cooperativity phase-space for other concentrations of Cks1. This figure extends the results shown in Figure 2, left 
panel. We show here that increasing the concentration of Cks1 (from 0.01 μM to 0.3 μM) results in an increase of cooperativ-
ity of the system, specifically for the concentrations of Skp2. Yet this increase has no effect on the maximum amount of infor-
mation that is exchanged.
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plot of A(Skp2, Cdk2, p27) gives a quantitative interpreta-
tion of how these three proteins affect the communication
over the channel Cks1.

Channel capacity and noise of the p27-Cks1-Skp2 
complex
The maxima of these contour diagrams represent the
capacity of the system, i.e. the maximum amount of infor-
mation that can be transmitted over the channel with an
arbitrary small probability of error [22]. As can be seen in Fig-
ure 2 (left panel) channel capacity is achieved for the opti-

mal input distribution {[p27], [Skp2]}* = {5.8 μM,
0.0512 μM} (relative to the channel concentration
[Cks1]* = 0.1 μM) for the ternary complex p27-Cks1-
Skp2. At these concentrations ~0.61 bits of information is
received as output for every bit of input. As previously
argued, this capacity remains the same even when the con-
centration of Cks1 changes. In terms of cooperativity, this
means that even though the system is not fully coopera-
tive, the balance between the assembled degradation sys-
tem and independent adaptor protein is rather efficient
while at the same time the intermediate complexes are

Deconstruction of the information exchange in the quaternary complex Cdk2-p27-Cks1-Skp2Figure 5
Deconstruction of the information exchange in the quaternary complex Cdk2-p27-Cks1-Skp2. This figure shows 
the mutual information between Skp2 and p27 (top left panel), Skp2 and Cdk2 (top right panel) and the effect of integrating 
both signals called mutual information (bottom left panel). The majority of the transmission occurs between the proteins Skp2 
and p27. There is little interaction between Skp2 and Cdk2. Yet the stochiometric relation between p27 and Cdk2 modulates 
the signal in such a way that more information can be exchanged.
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few. Hence the capacity of the system is limited by the
molecular concentrations that can be attained at steady
state.

Figure 3 (left panel), shows further that optimal capacity
is achieved when the error probabilities f and g are
approximately equal, making the channel symmetric. The
error probabilities intersect at f = g = 0.075 for [p27] = 5.8
μM. This fact follows from our previous argumentation
that the highest mutual information is attained when
both the ratio of complete assembly and individual adap-
tor protein is well balanced and the concentrations of
binary complexes are as low as possible. This small error
value shows that the cooperative channel within Cks1 is a
very efficient channel. Even more, for increasing values of
[Skp2], the capacity of the channel will never go beyond

this point. This result is shown in Figure 6. When follow-
ing the sequence of plots from the top left to the bottom
right, one can observe that, while the concentration of
Skp2 increases, magnitude of the mutual information
(green line) increases until it reaches a maximum (centre
plot in Figure 6). Afterwards the magnitude decreases
again. Additionally we visualized the two error-probabili-
ties f (black line) and g (red line) representing the error of
reading a signal when no input was given (when p27
binds to Cks1 without prior binding of Skp2) and the
error of giving a signal and not reading the output (when
Skp2 binds to Cks1 without posterior binding of p27). As
can be seen the concentration of Skp2 has no (or very lit-
tle) influence on these probabilities since there is almost
no change in both lines when comparing the different
plots. The concentration of p27, on the other hand, has a

Skp2 regulates the mutual information and noise in the communicationFigure 6
Skp2 regulates the mutual information and noise in the communication. We analysed the relationship between the 
mutual information for fixed concentrations Cks1. The concentration of Skp2 varies between plots from 0 μM and 0.2 μM. 
The concentration of p27 varies in each plot between 0 μM and 20 μM. Following the plots from top left to bottom right, the 
amount of Skp2 increases. As can be observed, the amount of mutual information (green line) also increases until some maxi-
mum is reached (centre plot). At this same point the error probabilities f and g intersect.
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strong influence on these values. When [p27] = 0 μM, f
becomes 0 and g becomes 1 (see Methods). For very high
values of [p27] (like 50 μM) the value of f reaches almost
50%, which indicates that the channel is completely ran-
dom, and g becomes almost zero. This extreme situation
is due to an over-representation of the p27 protein. As a
consequence, there is more than enough p27 to bind to
Cks1 without having any input signal (Skp2).

We added in each plot a blue line that marks the concen-
tration of p27 where the maximum information transmis-
sion is found ([p27]* = 5.79 μM and [Skp2]* = 0.0512
μM) for all combinations of [Skp2] and [p27] (see also
Figure 2 for this maximum). We immediately notice here
that this vertical line lies at the intersection of the two
error probabilities (left panel Figure 3) as well as the 50%
mark of the probability of having p27 bound to Cks1
(right panel Figure 3). Consequently, when the channel is
symmetric the SCFSkp2model system studied here reaches
maximal information exchange.

By adding Cdk2 in the system, the capacity becomes ~0.75
bits (see Figure 2 right panel), confirming the effect of
including Cdk2 as discussed in ref. 10. Moreover, the area
of optimal response increases (see red area in Figure 2
right panel) allowing a wider range of useful Skp2 and
p27 concentrations.

Conclusion
All these results show that, given the binding affinities at
equilibrium and the overall concentrations of the differ-
ent components, mutual information quantifies for
which protein concentrations the systems' cooperativity,
or more specific its coordination, is optimal. Our analysis
clearly shows (see Figure 2) that both Skp2 and Cks1 con-
centrations are crucial parameters to obtain proper regula-
tory behaviour in the p27 degradation system. If binding
is independent then no information exchange would be
observed. Moreover, this narrow range for Skp2 remains
operational for a wide range of p27 concentrations, mak-
ing the SCFSkp2 ubiquitination system robust to variations
in p27 abundance. When moving outside the boundaries
defined for Skp2 the coordination between the complex
members is lost, leading possibly to continuous activation
without proper regulation. This observation seems to cor-
roborate experimental studies on the over expression of
Skp2 (and Cks1) in relation to the development cancer
[23-26]. Even though, the current analysis is performed
on the steady-state information of this biochemical sys-
tem, the underlying idea is that all the proteins of the mac-
romolecular complex become expressed so that their
mutual concentrations fall into the highly cooperative
area (see Figure 2). Further analysis is off course required
to verify this hypothesis. To conclude, the present result
show that Shannon's information theory quantifies the

cooperativity of biochemical systems, making it an impor-
tant tool for the current attempts to understand coopera-
tivity in a systems perspective.

Methods
Defining Cks1 as an asymmetric noisy channel
In information theory communication occurs through
noisy channels[10], where the noise is the result of an
error in the transmission. Different kinds of channels
exist, but here the focus is on discrete and memoryless chan-
nels. Concretely, a noisy channel is defined by an input
alphabet AX, output alphabet AY, a set of conditional
probability distributions P(y|x). The conditional proba-
bility distributions provide for every input signal (x ∈ AX)
the probability that a particular output signal (y ∈ AY) is
produced. When the alphabets contain only two symbols
and the probability of having a miscommunication is the
same for both input symbols, the channel is also referred
to as a binary symmetric noisy channel. Given this descrip-
tion, the cooperative pathway within Cks1 can now be
defined as a noisy channel where the input and output
alphabets both consist of the symbols 0 and 1, referring
respectively to the unbound and bound states of both
binding sites of Cks1. To keep things simple, the channel
description of Cks1 uses only two of the three proteins
that bind to Cks1 in the SCFSkp2 model system: Skp2 and
phosphorylated p27. Since the symbols refer to bound
and unbound state of either Skp2 or p27 to Cks1, there are
four probabilities relevant here: The probability that both
Skp2 and p27 are bound, that both are unbound and that
Skp2 is bound (unbound) to Cks1 and p27 is unbound
(bound). These probabilities are visualized in Figure 1
(right panel). Since the information transmission corre-
sponds to one of the four output complexes in the right
panel of Figure 1, the associated probabilities can be
derived from the concentrations of these complexes at
equilibrium. These probabilities can be organized in a
transmission matrix Q:

where f and g are defined as

This relation between concentrations implies that the
errors, and later also the information exchange, depends
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on the concentration of the proteins that may be pro-
duced by the system.

Determining the equilibrium concentrations
We determine the concentrations of the different proteins
and protein complexes using the dissociation constants
determined by Seeliger et al. [19]. Using these binding
affinities a system of equations is derived, which is numer-
ically solved by determining the roots of these equations.
For the simplified model system, which only incorporates
Cks1, Skp2 and phosphorylated p27, this system of six
equations is the following:

The system contains six parameters, namely [Cks1]0,
[Skp2]0, [p27]0, Kd [Skp2-Cks1], Kd [Cks1-p27] and Kd [Skp2Cks1-p27].
The first three parameters correspond to the total concen-
trations of the proteins in the model system both in isola-
tion and in complexes. The latter three parameters are the
three dissociation constants specific to the SCFSkp2 model
system. Note that the dissociation constant Kd [Skp2Cks1-p27]
refers here to the dissociation of p27 from the complex
Skp2-Cks1-p27. The results remain the same if the alterna-
tive dissociation constant, dissociating Skp2 from Skp2-
Cks1-p27, is used. When the values for these parameters
are inserted from ref. 19, a root finding algorithm is
applied to determine the equilibrium concentrations of
all the members of this system: [Cks1], [Skp2], [p27],
[Skp2-Cks1], [Cks1-p27] and [Skp2-Cks1-p27]. Once these
concentrations are obtained, the probabilities in the
matrix Q can be determined.

Calculating mutual information
Mutual information expresses the amount of information
that the output conveys about the input (and vice versa).
It is formally expressed in terms of entropy:

where the entropies are calculated as:

The base of the logarithm determines the units in which
mutual information is expressed. Usually it is either a nat-
ural (ln x) or a binary logarithm (log2 x), making the units
either nats (natural digits) or bits (binary digits). Here, a
binary logarithm is used. So mutual information (see
Equation 3) expresses how much we learn about the out-
put (or input) of a channel when we receive information
about the input (or output). This is calculated by subtract-
ing the entropy (uncertainty) on the state of the output
(or input) from the entropy (uncertainty) of the output
(or input) when we know the input (or output). So all
entropy scores are related to the state of the channel (here
Cks1) and not the state of the input and output proteins,
respectively Skp2 and p27.

Concretely, all entropy values can be easily derived from
the probabilities related to the input and output state of
Cks1. For instance, if X corresponds to Skp2, then P(Skp2
= 0) and P(Skp2 = 1) correspond to the probabilities that
Skp2 is bound or not bound to Cks1. This leads to the fol-
lowing formulation of the entropy for Skp2:

where

The entropy H(p27) is derived in the same way. The joint
entropy is

where
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Multivariate mutual information
To derive the information exchange between three or
more proteins a multivariate approach needs to be fol-
lowed[11,12]. This approach allows the analysis of the
signal between two input proteins and an output protein.
As in the previous formulation, the mutual information is
determined using entropy:

where X represents the output signal and Y and Z repre-
sent two input signals or visa versa. In addition, the effect
of either one of the components on the two other ones
can be analysed by eliminating this component. For
instance if one wants to determine the effect of Cdk2 on
the communication between Skp2 and phosphorylated
p27, the mutual information I(Skp2;p27) and the aver-
aged transmitted information ICdk2(Skp2;p27) need to be
determined (see ref. 9 for the details). If I(Skp2;p27) is not
equal to ICdk2(Skp2;p27) then Cdk2 has an effect on the
transmission between the two other proteins. This differ-
ence, called the interaction information A(Skp2, Cdk2,
p27), is the gain (or loss) in the sample information trans-
mitted between any two of the proteins, caused by the
additional knowledge of the third one. Combining the
interaction information with I(Skp2;p27) and
I(Skp2;Cdk2) produces again the multivariate mutual
information I(Skp2; Cdk2, p27). As a consequence,
A(Skp2, Cdk2, p27) expresses how the two signals are
modulated, which can be either in a negative of positive
way.
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