4 research outputs found

    SelenoDB 2.0: annotation of selenoprotein genes in animals and their genetic diversity in humans

    Get PDF
    SelenoDB (http://www.selenodb.org) aims to provide high-quality annotations of selenoprotein genes, proteins and SECIS elements. Selenoproteins are proteins that contain the amino acid selenocysteine (Sec) and the first release of the database included annotations for eight species. Since the release of SelenoDB 1.0 many new animal genomes have been sequenced. The annotations of selenoproteins in new genomes usually contain many errors in major databases. For this reason, we have now fully annotated selenoprotein genes in 58 animal genomes. We provide manually curated annotations for human selenoproteins, whereas we use an automatic annotation pipeline to annotate selenoprotein genes in other animal genomes. In addition, we annotate the homologous genes containing cysteine (Cys) instead of Sec. Finally, we have surveyed genetic variation in the annotated genes in humans. We use exon capture and resequencing approaches to identify single nucleotide polymorphisms in more than 50 human populations around the world. We thus present a detailed view of the genetic divergence of Sec- and Cys-containing genes in animals and their diversity in humans. The addition of these data sets into the second release of the database provides a valuable resource for addressing medical and evolutionary questions in selenium biology

    Phylotyping and Functional Analysis of Two Ancient Human Microbiomes

    Get PDF
    Background: The Human Microbiome Project (HMP) is one of the U.S. National Institutes of Health Roadmap for Medical Research. Primary interests of the HMP include the distinctiveness of different gut microbiomes, the factors influencing microbiome diversity, and the functional redundancies of the members of human microbiotas. In this present work, we contribute to these interests by characterizing two extinct human microbiotas. Methodology/Principal Findings: We examine two paleofecal samples originating from cave deposits in Durango Mexico and dating to approximately 1300 years ago. Contamination control is a serious issue in ancient DNA research; we use a novel approach to control contamination. After we determined that each sample originated from a different human, we generated 45 thousand shotgun DNA sequencing reads. The phylotyping and functional analysis of these reads reveals a signature consistent with the modern gut ecology. Interestingly, inter-individual variability for phenotypes but not functional pathways was observed. The two ancient samples have more similar functional profiles to each other than to a recently published profile for modern humans. This similarity could not be explained by a chance sampling of the databases. Conclusions/Significance: We conduct a phylotyping and functional analysis of ancient human microbiomes, while providing novel methods to control for DNA contamination and novel hypotheses about past microbiome biogeography. We postulate that natural selection has more of an influence on microbiome functional profiles than it does on the species represented in the microbial ecology. We propose that human microbiomes were more geographically structured during pre-Columbian times than today

    Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity

    No full text
    Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killercell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer
    corecore