405 research outputs found

    Tumor Treating Fields (TTFields) Therapy Concomitant with Taxanes for Cancer Treatment

    Get PDF
    Non-small cell lung cancer; Ovarian cancer; Pancreatic cancerCáncer de pulmón de células no pequeñas; Cáncer de ovarios; Cáncer de páncreasCàncer de pulmó de cèl·lules no petites; Càncer d'ovaris; Càncer de pàncreesNon-small cell lung cancer, ovarian cancer, and pancreatic cancer all present with high morbidity and mortality. Systemic chemotherapies have historically been the cornerstone of standard of care (SOC) regimens for many cancers, but are associated with systemic toxicity. Multimodal treatment combinations can help improve patient outcomes; however, implementation is limited by additive toxicities and potential drug–drug interactions. As such, there is a high unmet need to develop additional therapies to enhance the efficacy of SOC treatments without increasing toxicity. Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. The therapy is locoregional and is delivered noninvasively to the tumor site via a portable medical device that consists of field generator and arrays that are placed on the patient’s skin. As a noninvasive treatment modality, TTFields therapy-related adverse events mainly consist of localized skin reactions, which are manageable with effective acute and prophylactic treatments. TTFields selectively target cancer cells through a multi-mechanistic approach without affecting healthy cells and tissues. Therefore, the application of TTFields therapy concomitant with other cancer treatments may lead to enhanced efficacy, with low risk of further systemic toxicity. In this review, we explore TTFields therapy concomitant with taxanes in both preclinical and clinical settings. The summarized data suggest that TTFields therapy concomitant with taxanes may be beneficial in the treatment of certain cancers.All costs related to publication were funded by Novocure Inc

    Three-arm, randomized, phase 2 study of carboplatin and paclitaxel in combination with cetuximab, cixutumumab, or both for advanced non-small cell lung cancer (NSCLC) patients who will not receive bevacizumab-based therapy: An Eastern Cooperative Oncology Group (ECOG) study (E4508)

    Get PDF
    BACKGROUND: Preclinical evidence supports the clinical investigation of inhibitors to the insulin-like growth factor receptor (IGFR) and the epidermal growth factor receptor (EGFR) either alone or in combination as treatment for patients with non-small cell lung cancer (NSCLC). METHODS: Patients with chemotherapy-naĂŻve, advanced NSCLC who had an Eastern Cooperative Oncology Group performance status of 0 or 1 were eligible. Patients were randomized to receive carboplatin intravenously at an area under the plasma drug concentration-time curve of 6.0 plus paclitaxel 200 mg/m(2) intravenously on day 1 every 3 weeks combined with either intravenous cetuximab weekly (arm A), intravenous cixutumumab every 2 weeks (arm B), or both (arm C). Patients who had nonprogessing disease after 12 weeks of therapy were permitted to continue on maintenance antibody therapy until they developed progressive disease. The primary endpoint was progression-free survival (PFS). The study design required 180 eligible patients and had 88% power to detect a 60% increase in median PFS for either comparison (arm A vs arm C or arm B vs arm C) using the log-rank test. RESULTS: From September 2009 to December 2010, 140 patients were accrued. The study was closed to accrual early because of an excessive number of grade 5 events reported on arms A and C. Thirteen patients died during treatment (6 patients on arm A, 2 patients on arm B, and 5 patients on arm C), including 9 within approximately 1 month of starting therapy. The estimated median PFS for arms A, B, and C were similar at 3.4 months, 4.2 months, and 4 months, respectively. CONCLUSIONS: On the basis of the apparent lack of efficacy and excessive premature deaths, the current results do not support the continued investigation of carboplatin, paclitaxel, and cixutumumab either alone or in combination with cetuximab for patients with advanced NSCLC

    A Pilot Study (SWOG S0429) of Weekly Cetuximab and Chest Radiotherapy for Poor-Risk Stage III Non-Small Cell Lung Cancer

    Get PDF
    PURPOSE: Stage III non-small cell lung cancer (NSCLC) patients with poor performance status (PS) or co-morbidities are often not candidates for standard chemoradiotherapy (chemoRT) due to poor tolerance to treatments. A pilot study for poor-risk stage III NSCLC patients was conducted combining cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR), with chest radiation (RT). METHODS: Stage III NSCLC patients with Zubrod PS 2, or Zubrod PS 0-1 with poor pulmonary function and co-morbidities prohibiting chemoRT were eligible. A loading dose of cetuximab (400 mg/m(2)) was delivered week 1, followed by weekly cetuximab (250 mg/m(2))/RT to 64.8 Gy in 1.8 Gy daily fractions, and maintenance weekly cetuximab (250 mg/m(2)) for 2 years or until disease progression. H-score for EGFR protein expression was conducted in available tumors. RESULTS: Twenty-four patients were enrolled. Twenty-two were assessed for outcome and toxicity. Median survival was 14 months and median progression-free survival was 8 months. The response rate was 47% and disease control rate was 74%. Toxicity assessment revealed 22.7% overall \u3e /=Grade 3 non-hematologic toxicities. Grade 3 esophagitis was observed in one patient (5%). The skin reactions were mostly Grade 1 or 2 except two of 22 (9%) had Grade 3 acne and one of 22 (5%) had Grade 3 radiation skin burn. Grade 3-4 hypomagnesemia was seen in four (18%) patients. One patient (5%) had elevated cardiac troponin and pulmonary emboli. H-score did not reveal prognostic significance. An initially planned second cohort of the study did not commence due to slow accrual, which would have added weekly docetaxel to cetuximab/RT after completion of the first cohort of patients. CONCLUSION: Concurrent weekly cetuximab/chest RT followed by maintenance cetuximab for poor-risk stage III NSCLC was well tolerated. Further studies with larger sample sizes will be useful to establish the optimal therapeutic ratio of this regimen

    Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution

    Get PDF
    Small cell lung cancer (SCLC) has recently been subcategorized into neuroendocrine (NE)-high and NE-low subtypes showing 'immune desert' and 'immune oasis' phenotypes, respectively. Here, we aimed to characterize the tumor microenvironment according to immune checkpoints and NE subtypes in human SCLC tissue samples at the protein level. In this cross-sectional study, we included 32 primary tumors and matched lymph node (LN) metastases of resected early-stage, histologically confirmed SCLC patients, which were previously clustered into NE subtypes using NE-associated key RNA genes. Immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded TMAs with antibodies against CD45, CD3, CD8, MHCII, TIM3, immune checkpoint poliovirus receptor (PVR), and indoleamine 2,3-dioxygenase (IDO). The stroma was significantly more infiltrated by immune cells both in primary tumors and in LN metastases compared to tumor nests. Immune cell (CD45+ cell) density was significantly higher in tumor nests (P = 0.019), with increased CD8+ effector T-cell infiltration (P = 0.003) in NE-low vs NE-high tumors. The expression of IDO was confirmed on stromal and endothelial cells and was positively correlated with higher immune cell density both in primary tumors and in LN metastases, regardless of the NE pattern. Expression of IDO and PVR in tumor nests was significantly higher in NE-low primary tumors (vs NE-high, P < 0.05). We also found significantly higher MHC II expression by malignant cells in NE-low (vs NE-high, P = 0.004) tumors. TIM3 expression was significantly increased in NE-low (vs NE-high, P < 0.05) tumors and in LN metastases (vs primary tumors, P < 0.05). To our knowledge, this is the first human study that demonstrates in situ that NE-low SCLCs are associated with increased immune cell infiltration compared to NE-high tumors. PVR, IDO, MHCII, and TIM3 are emerging checkpoints in SCLC, with increased expression in the NE-low subtype, providing key insight for further prospective studies on potential biomarkers and targets for SCLC immunotherapies

    Reanalysis of the NCCN PD-L1 Companion Diagnostic Assay Study for Lung Cancer in the Context of PD-L1 Expression Findings in Triple-Negative Breast Cancer

    Get PDF
    The companion diagnostic test for checkpoint inhibitor immune therapy is an immunohistochemical test for PD-L1. The test has been shown to be reproducible for expression in tumor cells, but not in immune cells. Immune cells were used in the IMpassion130 trial which showed PD-L1 expression was associated with a better outcome. Two large studies have been done assessing immune cell PD-L1 expression in lung cancer. Here, we reanalyze one of those studies, to show that, even with an easier scoring method, there is still only poor agreement between assays and pathologist for immune cell PD-L1 expression

    23 Validation of PD-L1 dynamic expression on extracellular vesicles as a predictor of response to immune-checkpoint inhibitors and survival in non-small cell lung cancer patients

    Get PDF
    BackgroundImmune-checkpoint inhibitors (ICIs) revolutionized the treatment of advanced non-small cell lung cancer (NSCLC).1–3 To date, tissue PD-L1 immunohistochemistry is one of the leading biomarkers for prediction of ICIs response but has several limitations.4 5Extracellular vesicles (EVs) are cell-derived structures involved in cell communication and represent a potential minimally invasive alternative to predicting ICI response.6–9 Based on this and our preliminary results presented at SITC 2020,10 we hypothesize that EV PD-L1 predicts response to ICIs in NSCLC.MethodsThis study evaluates an exploratory cohort of advanced/metastatic NSCLC patients receiving ICIs (cohort A) and a validation cohort receiving Pembrolizumab+docetaxel or docetaxel alone (PROLUNG Phase 2 randomized trial) (cohort B).11 Plasma samples were collected pre-treatment (T1) and at 3 treatment cycles (T2) (figure 1A). Response was assessed by computed-tomography scan at 3 (cohort A) and 6–8 treatment cycles (cohort B) according to mono- or chemotherapy combination therapy. Patients were classified as responders (partial, stable, or complete response) or non-responders (progressive disease) by RECISTv1.1.12 EVs were isolated by serial ultracentrifugation and characterized following ISEV recommendations.13,14 Tissue PD-L1 expression was measured by standardized immunohistochemistry (SP263, 22C3, or 28–8 clones)5 and EV PD-L1 expression by immunoblot and its ratio was calculated as EV PD-L1 T2/T1. Cut-offs from the exploratory cohort were applied to the validation cohort, being EV PD-L1 ratio <0.85 = Low.ResultsPaired samples from 30 ICIs, 23 pembrolizumab+docetaxel, and 15 docetaxel treated patients were analyzed. In cohort A, non-responders showed higher EV PD-L1 ratio than responders (p=0.012) (figure 1B) with an area-under-the-curve (AUC) of 77.3%, 83.3% sensitivity, and 61.1% specificity, while the tissue PD-L1 was not predictive (AUC=50%). As a validation, pembrolizumab+docetaxel treated non-responders showed higher EV PD-L1 ratio (p=0.036) than responders with an AUC=69.3%, sensitivity=75%, and specificity=63.6%, outperforming the tissue PD-L1 (figure 1C). No statistically significant differences were observed in the docetaxel group (p=0.885). Moreover, ICIs patients with higher EV PD-L1 ratio showed shorter progression-free survival (PFS) (HR=0.30, p=0.066) and overall survival (OS) (HR=0.17, p=0.016) (figure 1D) which was also observed in the pembrolizumab+docetaxel cohort with shorter PFS (HR=0.12, p=0.004) and OS (HR=0.23, p=0.010) (figure 1E). EV PD-L1 ratio did not predict survival in docetaxel-treated patients.Abstract 23 Figure 1(A) Study design and methodology. (B) EV PD-L1 ratio predicts response to ICIs in 30 NSCLC patients from the discovery cohort A and outperforms tissue PD-L1. (C) EV PD-L1 ratio is predictive for response to pembrolizumab+docetaxel in 23 NSCLC patients but not in 15 patients receiving docetaxel alone from cohort B. (D) Higher EV PD-L1 ratio predicts shorter PFS and OS in 30 patients from the discovery cohort A treated with ICIs. (E) Higher EV PD-L1 ratio is associated with shorter PFS and OS in 23 patients treated with pembrolizumab+docetaxel but not in patients treated with docetaxel alone. Abbreviations: CT: Computed tomography, EV: Extracellular vesicle; HR: Hazard Ratio; ICIs: Immune-checkpoint Inhibitors; IHC: Immunohistochemistry; NR: Non-Responders; OS: Overall Survival; p: p-value; PFS: Progression-free survival; R: Responders [Created with BioRender].ConclusionsWe demonstrated that treatment-associated changes in EV PD-L1 levels are predictive of response and survival in advanced NSCLC patients treated with ICIs. This model, if confirmed in a large prospective cohort, could have important clinical implications, guiding treatment decisions and improving the outcome of patients receiving ICIs.AcknowledgementsWe would like to extend our gratitude to the all the patients that participated in the study.ReferencesBorghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med 2015;373:1627–39.Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016;387:1540–50.Ruiz-Patiño A, Arrieta O, Cardona AF, Martín C, Raez LE, Zatarain-Barrón ZL, et al. Immunotherapy at any line of treatment improves survival in patients with advanced metastatic non-small cell lung cancer (NSCLC) compared with chemotherapy (Quijote-CLICaP). Thorac Cancer 2020;11:353–61.Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021;18:345–362.Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 2017;12:208–222.Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 2019;177:414–427.e13.Cordonnier M, Nardin C, Chanteloup G, Derangere V, Algros MP, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 2020;9:1710899.Del Re M, Cucchiara F, Rofi E, Fontanelli L, Petrini I, Gri N, et al. A multiparametric approach to improve the prediction of response to immunotherapy in patients with metastatic NSCLC. Cancer Immunol Immunother 2020;70:1667–1678.Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.10 de Miguel Perez D, Russo A, Gunasekaran M, Cardona A, Lapidus R, Cooper B, et al. 31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients. 2020J Immunother Cancer;8(Suppl 3):A30–A30.Arrieta O, Barrón F, Ramírez-Tirado LA, Zatarain-Barrón ZL, Cardona AF, Díaz-García D, et al. Efficacy and safety of pembrolizumab plus docetaxel vs docetaxel alone in patients with previously treated advanced non–small cell lung cancer: the PROLUNG phase 2 randomized clinical trial. 2020JAMA Oncol;6:856–864.Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). 2009Eur J Cancer;45:228–47.Reclusa P, Verstraelen P, Taverna S, Gunasekaran M, Pucci M, Pintelon I, et al. Improving extracellular vesicles visualization: From static to motion. 2020Sci Rep;10:6494.Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. 2018J Extracell Vesicles;7:1535750Ethics ApprovalPatients consented to Institutional Review Board–approved protocol, A.O. Pappardo, Messina, Italy for cohort A and Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México in case of the cohort B. Biological material was transferred to the University of Maryland School of Medicine, Baltimore for EV analysis under signed MTA between institutions MTA/2020–13111 & MTA/2020–13113
    • …
    corecore