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Simple Summary: Tumor Treating Fields (TTFields) are electric fields that prevent cancer cell survival
and tumor growth, without impacting healthy cells. TTFields therapy is delivered to the tumor using
arrays that are placed on the patient’s skin, surrounding the tumor site, without the need for invasive
procedures. Taxanes are chemotherapies used to successfully treat several aggressive cancers and are
associated with side effects such as neutropenia (low neutrophils) and peripheral neuropathy. Although
taxanes are considered to be the standard of care for many cancers, there is a need to identify other
treatments that can be used in combination, to enhance their effectiveness, without increasing the side
effects. The preclinical (laboratory) and clinical (human) data summarized here suggest that TTFields
therapy together with taxanes may be beneficial in the treatment of several cancers.

Abstract: Non-small cell lung cancer, ovarian cancer, and pancreatic cancer all present with high
morbidity and mortality. Systemic chemotherapies have historically been the cornerstone of standard
of care (SOC) regimens for many cancers, but are associated with systemic toxicity. Multimodal
treatment combinations can help improve patient outcomes; however, implementation is limited
by additive toxicities and potential drug—drug interactions. As such, there is a high unmet need to
develop additional therapies to enhance the efficacy of SOC treatments without increasing toxicity.
Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular
processes critical for cancer cell viability and tumor progression. The therapy is locoregional and is
delivered noninvasively to the tumor site via a portable medical device that consists of field generator
and arrays that are placed on the patient’s skin. As a noninvasive treatment modality, TTFields
therapy-related adverse events mainly consist of localized skin reactions, which are manageable
with effective acute and prophylactic treatments. TTFields selectively target cancer cells through a
multi-mechanistic approach without affecting healthy cells and tissues. Therefore, the application
of TTFields therapy concomitant with other cancer treatments may lead to enhanced efficacy, with
low risk of further systemic toxicity. In this review, we explore TTFields therapy concomitant with
taxanes in both preclinical and clinical settings. The summarized data suggest that TTFields therapy
concomitant with taxanes may be beneficial in the treatment of certain cancers.

Keywords: Tumor Treating Fields (TTFields); taxanes; non-small cell lung cancer (NSCLC); ovarian

cancer; pancreatic cancer; mechanism of action
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1. Introduction

Cancer is a leading cause of death, accounting for one in six deaths worldwide [1].
In 2020, lung cancer was the most common cancer-related death (1.8 million deaths),
followed by colorectal cancer and liver cancer [1]. Other aggressive solid tumors which
pose treatment challenges and have high mortality rates include ovarian cancer [2] and
pancreatic cancer [3].

Lung cancer has a 5-year survival rate ranging from 10% to 20% [4]. Non-small cell
lung cancer (NSCLC) constitutes > 85% of all lung cancers [5], and 60-70% of patients
present with advanced NSCLC at the time of diagnosis [4,6]. The multifaceted standard of
care (SOC) for advanced NSCLC consists of molecular-targeted therapy or immunother-
apy with or without chemotherapy or chemoradiation [7,8]. Neoadjuvant chemotherapy
or concurrent chemoradiation consists of a platinum-based doublet (e.g., cisplatin and
etoposide or carboplatin and paclitaxel) [7,8]. In the USA, neoadjuvant chemotherapy and
immunotherapy (nivolumab) has recently been approved by the FDA [9,10].

Ovarian cancer has the highest mortality of all gynecological cancers [2]. Approxi-
mately 75% of patients present with stage Il or IV cancer at the time of diagnosis according
to the International Federation of Gynecology and Obstetrics cancer staging system [11,12],
with a 5-year survival rate ranging from 17% to 39% [13]. The SOC in advanced ovarian can-
cer is surgery, carboplatin and paclitaxel with or without bevacizumab, and/or poly-ADP
ribose polymerase inhibitor (PARPi) maintenance therapy [14,15].

Worldwide, pancreatic cancer is the 8th and 9th leading cause of death from cancer
in men and women, respectively [3]; due to asymptomatic early stages, most patients are
diagnosed at stage III or IV with a 5-year survival rate of approximately 9%. Due to its
advanced stage presentation, a dearth of efficacious treatments, and frequent resistance
to chemotherapy, pancreatic cancer is notoriously difficult to treat [16-20]. The SOC
for unresectable advanced pancreatic cancer is chemotherapy, either FOLFIRINOX or
gemcitabine with or without nab-paclitaxel, depending on the overall clinical presentation.

Combination treatment strategies are key in treating aggressive solid tumors, with the aim
of enhancing efficacy in an additive or synergistic manner, reducing drug resistance, limiting
metastatic potential, and hindering tumor growth [21]. Systemic treatments are frequently
associated with unfavorable adverse events (AEs), thus novel combination treatment regimens
should focus on improving efficacy without adding toxicity [21]. Due to the high prevalence
and extremely poor prognoses, there is an unmet need to find effective and tolerable treatment
regimens for NSCLC, ovarian cancer, and pancreatic cancer.

2. Tumor Treating Fields Overview

Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt
cellular processes critical for cancer cell viability and tumor progression [22-24]. The
electric fields range in frequency from 100 kHz to 500 kHz, which is too high to stimulate
tissue, and too low to have ionizing or significant heating effects [25,26]. TTFields are
delivered at a specific frequency based on the cancer cell type being targeted, allowing
different types of cancers to be treated optimally [27]. The optimal TTFields frequency
for NSCLC cells and pancreatic cancer cells is 150 kHz, and 200 kHz for ovarian cancer
cells [28-30]. As TTFields selectively target the distinct properties of cancer cells such as
division rate and morphology, healthy cells are largely unaffected [31-33].

TTFields therapy is delivered noninvasively to the tumor site via a portable medical
device (NovoTTF-200; Figure 1) that consists of a field generator and arrays that are
placed on the patient’s skin [34,35]. The magnitude of the anticancer effects of TTFields
therapy is dependent on the frequency, intensity, and time of treatment [22,27,36], so it is
recommended that TTFields therapy is used for at least 18 h/day to maximize treatment
benefits [34,35,37]. The first-generation medical device (NovoTTF-100 device) weighed 6
lbs., however the second-generation medical device, NovoTTF-200, has been redesigned to
weigh 2.7 Ibs. to improve patient acceptance, satisfaction, and usage [38].
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Figure 1. The Tumor Treating Fields (TTFields) medical device. (A) All components of the wearable
medical device (NovoTTF-200T) that generates TTFields; example array layout * for (B) the torso and
(C) the abdomen; (D) image of device within wearable backpack. Reused with permission from © 2023
Novocure GmbH-all rights reserved. The models depicted here are actors and not patients. * The exact
location of the array placement is determined during treatment planning, based on tumor location.

TTFields monotherapy is approved for recurrent glioblastoma (GBM) following results
from the pivotal phase III EF-11 study (EF-11; NCT00379470) showing marked improve-
ments in the safety profile and quality of life (QoL) compared to physician’s best choice [39].
TTFields therapy concomitant with temozolomide (TMZ) is approved for newly diag-
nosed GBM following positive results from the pivotal EF-14 study (EF-14; NCT00916409)
whereby overall survival (OS) was extended by 4.9 months and progression free survival
(PFS) by 2.7 months with TTFields therapy concomitant with TMZ vs. TMZ alone. Further-
more, there was no significant increase in systemic toxicity when TTFields therapy was
added to TMZ [40,41].

TTFields therapy concomitant with pemetrexed and cisplatin/carboplatin is approved
for unresectable malignant mesothelioma based on results from the phase II STELLAR
study (EF-23; NCT02397928) wherein OS was improved compared to historical controls
(18.2 vs. 12.1 months) with no increase in systemic toxicity [42,43]. Table 1 details the global
approval status of TTFields therapy.
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Table 1. A summary of the global approval status of TTFields therapy.

Disease Country/Countries Where TTFields Therapy Is Approved

USA
Canada
China
Hong Kong
Japan
Europe *
Israel
Australia

USA

Pleural mesothelioma Hong Kong
Europe *

GBM
+

Approval status as of January 2023. * Approval in several European Union countries and Switzerland, which is not a
European Union member. ¥ Approved for grade 4 Glioma. GBM: glioblastoma; TTFields: Tumor Treating Fields.

TTFields therapy has shown encouraging preliminary efficacy and a tolerable safety
profile in several studies across a range of solid tumor types—-including pancreatic, ovarian,
and lung-when used concomitantly with systemic therapies [44-47]. Evaluation of TTFields
therapy concomitant with a range of therapies in various solid tumors is ongoing.

3. The TTFields Mechanism of Action

TTFields target cancer cells via multiple mechanisms, physically disrupting processes
important for cancer cells, which can lead to cell death (Figure 2) [22,24,25]. TTFields exert
an anti-mitotic effect on cancer cells through induction of aberrant mitotic spindle forma-
tion during metaphase and disruption of the septin arrangement at the cleavage furrow,
leading to cytoplasmic membrane blebbing, mitotic failure, and asymmetric chromosome
segregation [48,49]. A recent study provided a theoretical mechanism of action that may
explain this phenomenon: changes to the potential across tumor cell membranes could lead
to an influx of Ca* ions and subsequent abnormal spindle formation and apoptosis [50].
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Figure 2. The Tumor Treating Fields multifaceted mechanism of action. BBB, blood-brain barrier;
FA-BRCA, Fanconi Anemia-BRCA pathway [23,48,49,51-58].
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TTFields have also been shown to downregulate genes important for DNA repair, such
as the Fanconi Anemia-BRCA pathway [55-57]. Furthermore, TTFields-mediated increases
in R-loop formation, decreases in replication fork speed, and increases in DNA double-
strand breaks and chromatid aberrations, which can all result in apoptosis, have been
observed [55].

TTFields enhance antitumor immune responses by inducing immunogenic cell death
evidenced by release of high mobility group box 1 (HMGB1), initiation of the endoplasmic
reticulum (ER) stress response, and translocation of calreticulin to the cell surface [52].
Moreover, TTFields upregulate autophagy [52,59-62] and promote an infiltration of acti-
vated tumor leukocytes in preclinical models [52]. Preclinical NSCLC data demonstrate
that when TTFields treatment is used concomitantly with anti-programmed cell death
protein-1 (anti-PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4)
immunotherapies, there is an augmented antitumor effect with infiltration of tumor leuko-
cytes and reduced tumor volumes [52,58]. Importantly, TTFields treatment does not reduce
T-cell cytotoxicity [63]. TTFields also disrupt the nuclear envelope in vitro, activating
stimulator of interferon genes (STING) and absent in melanoma 2 (AIM2) inflammasomes,
which subsequently induces downstream adaptive immunity [53].

TTFields interfere with cancer cell motility and migration via disruption of the or-
ganization and dynamics of the microtubule network [24,60]. This leads to disruption of
cellular polarity and formation of radial protrusions of peripheral actin filaments and focal
adhesions, which can result in a loss of cytoskeletal directionality [24].

TTFields also transiently weaken the tight junctions between brain vascular endothelial
cells that form the blood-brain barrier (BBB), through delocalization of tight junction
proteins ZO-1 and claudin-5 [51]. As such, anticancer drugs can pass through the highly
selective, semipermeable BBB more easily than typically expected, increasing local drug
concentrations [51,64].

In vitro studies using GBM (U87-MG) cell lines showed that TTFields temporarily
increase the susceptibility of cancer cells to therapeutics by altering the cell membrane
structure and inducing pore formation to increase permeability. Importantly, this effect
was reversed 24 h after the cessation of TTFields treatment, whilst healthy cells remained
unaffected [65].

4. TTFields Therapy Concomitant with Systemic and Localized Anticancer Treatments

Due to the multimodal mechanism of action of TTFields therapy, efficacy of other
systemic and localized anticancer treatments can be enhanced when utilized concomitantly
with TTFields therapy, with a low risk of associated systemic toxicity [36,64]. As such
TTFields therapy is in many cases an ideal candidate for treating aggressive solid tumors
alongside SOC therapies.

4.1. TTFields Therapy Concomitant with Radiation

As with TTFields, radiation therapy causes DNA damage, resulting in cancer cell
death [56], providing rationale for concomitant application. The addition of TTFields treat-
ment to radiation therapy demonstrated enhanced efficacy in pancreatic [66], NSCLC [56],
and GBM cell lines [67,68], as well as in murine colorectal models [69]. Moreover, the
apoptotic effect was especially pronounced when TTFields treatment was applied prior to
radiation therapy.

4.2. TTFields Therapy Concomitant with Immunotherapy

In line with the current evidence demonstrating the immunomodulatory effects of
TTFields, concomitant use with immunotherapies invokes an additive effect both in vitro
and in vivo, without diminishing T-cell-mediated cytotoxicity in vitro [52,63]. In vitro,
TTFields treatment with anti-PD-1 demonstrated enhanced antitumor immunity in several
cell lines [52]. Invivo, TTFields treatment with anti-PD-1 led to decreased lung tumor
volume in mice, associated with increased ER stress and exposure of calreticulin [52].
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Similarly, use of TTFields treatment with anti-PD-1 and anti-CTLA-4 also reduced tumor
volumes in NSCLC mice models versus either agent alone, with an observed infiltration
of tumor leukocytes [58]. Table 2 presents a summary of preclinical studies evaluating
TTFields treatment with various immunotherapy agents.

Table 2. A summary of preclinical studies investigating TTFields treatment concomitant with im-
munotherapy or targeted therapy.

Study Disease Regimen Key Findings
Immunotherapies
TTFields treatment concomitant with
. TTFields therapy TRZ enhanced penetration of TRZ after
Kim etal,, 2021 [70] Breast cancer concomitant with TRZ inducing apoptosis; TTFields overcame

TRZ resistance in vivo and in vitro

Immunostimulatory effects from
TTFields-induced cell death were

TTFields therapy ) . .
Voloshin et al., 2020 [52] NSCLC, colorectal cancer concomitant with observed; TTFlelds t];eatme.n t utilized
. concomitantly with anti-PD-1
anti-PD-1 . . .
enhanced antitumor immunity and
decreased tumor volume
TTFields treatment enhanced the
TTFields therapy immunostimulatory effect of
Barsheshet et al., 2022 [58] NSCLC concomitant with anti-PD-1/anti-CTLA-4, causing tumor
anti-PD-1 and anti-CTLA-4 leukocyte infiltration and
reduced tumor volume
Targeted therapies

Concomitant use of TTFields treatment
TTFields therapy and sorafenib led to augmented efficacy

Davidi etal., 2022 [62] HCC concomitant with sorafenib through increased cellular stress and
apoptosis versus either agent alone
Sorafenib and TTFields treatment
. accelerated apoptosis via ROS generation;
Joetal., 2018 [71] GBM concfnfigi?ivti}tfriiz fenib TTFields treatment and sorafenib
significantly inhibited tumor cell motility,
cell invasiveness, and angiogenesis
Sorafenib plus TTFields treatment
. TTFields therapy significantly inhibited xenograft tumor
Kim etal., 2020 [72] GBM concomitant with sorafenib growth; STAT3 expression, linked to

tumor progression, was also reduced

HCC: hepatocellular carcinoma; GBM: glioblastoma; PD-1: programmed death protein-1; NSCLC: non-small
cell lung cancer; ROS: reactive oxygen species; STAT3: signal transducer and activator of transcription 3;
TRZ: trastuzumab; TTFields: Tumor Treating Fields.

4.3. TTFields Therapy Concomitant with Targeted Therapy

Concomitant use of TTFields treatment with PARPi produces synergistic anti-mitotic
effects in human lung cancer cell lines (H1299 and H157), as both treatments induce cellular
replication stress, cytotoxicity, and downstream apoptosis [55]. This effect is enhanced
further when radiation is included. In vitro studies on GBM cell lines demonstrated that
TTFields treatment concomitant with multi-kinase inhibitors led to inhibition of tumor
cell motility, invasiveness, and angiogenesis, as well as an increase in autophagy [71].
Likewise, in hepatocellular carcinoma preclinical models TTFields treatment concomitant
with sorafenib—a systemic small molecule multikinase inhibitor—led to a significant
increase in cellular stress and subsequent apoptosis compared to either agent alone [62].
An overview of TTFields treatment with targeted therapies is shown in Table 3.
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Table 3. A summary of clinical studies investigating TTFields therapy concomitant with chemotherapy.

Study Disease Phase Regimen Patients Key Findings
Pivotal studies
1 0,
Stupp et al., 2017 TTFields therapy TTFilg/llgg’:;lgrla)FS,vx(fgitsh/?Tlc\:/II%'n6w7n(t6hi—8 1)
EF-11; NCT00916409 ndGBM 1 concomitant with N =695 Py /6.2
TMZ: 4.0 (3.8-4.4)
[41] T™Z
p <0.001
. TTFields therapy
Ceresoli et al,, 2019 Pleural concomitant with Median OS, (95% CI) months
STELLAR; - I . N =280
mesothelioma pemetrexed and cis- 18.2 months (12.1-25.8) p value NA
NCT02397928 [73] . .
platin/carboplatin
TTFields therapy
concomitant with Safety
Rivera et al., 2019 gemcitabine In each cohort, 85% reported
PANOVA; PDAC I TTFields therapy N =40 grade > 3 AEs
NCT01971281 [44] concomitant with No increase in SAEs vs. systemic
gemcitabine and chemotherapy alone
nab-paclitaxel
Vergote et al., 2018 TTFields therapy Safety
4 0, (o)
INNOVATE; PROC 11 concomitant with N =31 Oveerli;ifeﬁsreefi’ng% ng;d‘; ig’ IﬁifEs
NCT02244502 [47] paclitaxel - 8Y;
chemotherapy alone
Other studies
TTFields therapy
concomitant with Median OS, (95% CI) months
bevacizumab and TTFields therapy concomitant with
irinotecan and bevacizumab and irinotecan and TMZ:
) ™Z B 32.5(17.0-49.0)
Luetal, 2019 [74] rGBM RW TTFields therapy N=48 TTFields therapy concomitant with
concomitant with bevacizumab-based chemotherapies: *
bevacizumab- 17.8 (13.3-19.9)

based p <0.05
chemotherapies *

Safety
Miller et al., 2022 TTF1e1d§ therapy No grade > 3 AEs TTFields
NCT03477110 [75] ndGBM I concomitant with N=30 therapy-related AE reported
- ™Z Grade 1 and 2 skin toxicity reported in
73.3% and 10%, respectively
TTFields therapy Safety
Garcia et al., 2018 [76] rGBM RW concomitant with N=21 TMZ and TTFields therapy were
T™MZ well-tolerated, few AEs reported
TTFields therapy Safety
Lazaridis et al., 2019 concomitant with _ Grade > 3 hematologic and grade > 3
[77] ndGBM RW lomustine and N=16 hepatotoxic AEs were observed in 44%

T™MZ and 25% of patients, respectively

* Bevacizumab based chemotherapies either consist of bevacizumab + irinotecan or bevacizumab + procarbazine
+ lomustine. AE: adverse event; CI: confidence interval; ndGBM: newly diagnosed glioblastoma; OS: overall
survival; PDAC: pancreatic ductal adenocarcinoma; PFS: progression free survival; PROC: platinum-resistant
ovarian cancer; tGBM: recurrent glioblastoma; RW: real-world; SAE: serious adverse event; TTFields: Tumor
Treating Fields; TMZ: temozolomide.

4.4. TTFields Therapy Concomitant with Chemotherapy
4.4.1. TTFields Therapy Concomitant with Chemotherapy: Overview

Several clinical studies have evaluated the safety and efficacy of TTFields therapy
used concomitantly with a range of chemotherapy agents, with findings demonstrating
improvements in efficacy and a low risk of additive systemic toxicity (Table 3). TTFields
therapy concomitant with the alkylating chemotherapeutic agent TMZ has demonstrated
marked improvements in survival outcomes in patients with newly diagnosed GBM [41].
Although TMZ is able to pass through the BBB unaided, the aforementioned ability of
TTFields to transiently weaken endothelial tight junctions may allow more TMZ to cross the
BBB, increasing local drug concentrations and ultimately enhancing efficacy [51]. Addition-
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ally, TTFields induce reversible pore formation in GBM cells, which may facilitate localized
increases of intracellular TMZ concentration, helping to improve treatment efficacy [53].

4.42. TTFields Therapy Concomitant with Taxanes

Taxanes are microtubule-targeting antitumor agents that have been synthesized to
effectively treat a wide range of aggressive solid tumors. Whilst taxanes have been a
cornerstone cytotoxic treatment for the past 40 years, systemic AEs and drug resistance
can present issues for patients [78,79]. Common dose-limiting AEs associated with taxanes
include peripheral neuropathy, neutropenia, and fatigue [80-83].

The taxanes paclitaxel and docetaxel bind to B-tubulin subunits, leading to poly-
merization of highly stable microtubules and subsequent disruption to the microtubule
organizing centre, cell cycle arrest, and eventual apoptosis [84]. Paclitaxel and docetaxel can
also stimulate or inhibit downstream molecular pathways—preclinical studies with both
treatments demonstrate nuclear translocation of transcription factors, increased caspase
activation, and subsequent impaired cancer cell clonogenicity [79,85-88].

TTFields” application leads to spindle disruption and apoptosis through decreased
microtubule polymerization and subsequent increase in free tubulin [48,89]. On a molecular
level, taxanes induce microtubule polymerization, facilitating growth of the polar protein
chain and increasing its dipole moment—given that TTFields are electric fields that act on
polar molecules, a longer microtubule may present an opportunity to exert more energy
and force, thus enhancing mitotic catastrophe [89,90].

Therefore, as both TTFields therapy and taxanes target tubulin, causing mitotic catas-
trophe and cellular death, additive efficacy is observed when used together. Here, we
report on preclinical and clinical studies investigating TTFields therapy concomitant with
taxanes in various aggressive solid tumors.

5. TTFields Therapy Concomitant with Taxanes in NSCLC, Ovarian Cancer, and
Pancreatic Cancer

5.1. TTFields Therapy Concomitant with Taxanes: NSCLC

Despite significant breakthroughs in the treatment of NSCLC, there are patients for
whom immunotherapies are not suitable, or those who have progressed after immunother-
apy treatment [91,92]. Effective and tolerable treatments that can be added to the existing
SOC for advanced NSCLC, without additive systemic toxicity, are needed. Paclitaxel with
or without carboplatin is a SOC in advanced NSCLC [7,93]; therefore, it is prudent to
evaluate the feasibility of TTFields therapy with paclitaxel in NSCLC.

In vitro studies demonstrated a substantial reduction in viability of human (H1299
and HTB-182) and murine (LLC-1) NSCLC cells when TTFields (150 kHz) treatment was
administered with paclitaxel vs. paclitaxel alone (Figure 3A) [30]. In vivo studies also illus-
trated that TTFields treatment concomitant with paclitaxel treatment reduced tumor size in
murine NSCLC models, compared to tumors treated with paclitaxel alone (Figure 3B) [30].
These preclinical data highlight the efficacy benefit of TTFields treatment with paclitaxel,
warranting further examination in clinical studies.

LUNAR is an ongoing pivotal, phase III randomized, open-label study (EF-24;
NCT02973789) of TTFields therapy concurrent with SOC therapies (ICIs or docetaxel) for
the treatment of stage IV NSCLC following platinum failure [94,95]. A total of 276 patients
have been randomized 1:1 into the experimental arm (TTFields therapy and ICIs/docetaxel)
or to the comparator of best SOC alone (ICIs/docetaxel) [94,95]. The primary endpoint is
the OS of patients treated with TTFields therapy plus ICIs or docetaxel, vs. ICIs or doc-
etaxel alone; key secondary endpoints include the OS of TTFields Therapy and docetaxel
vs docetaxel alone, the OS of TTFields Therapy and ICI vs ICI alone, radiological response,
PFS, QoL, TTFields therapy usage and the associated OS and PFS, and safety.
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Figure 3. The effect of the TTFields treatment concomitant with paclitaxel on (A) cell viability in vitro
on 2 human (H1299 and HTB-182) and 1 mouse (LLC1) cell line(s), and (B) tumor volume in vivo
on the LLC1 mouse model. * p < 0.05 vs. control group. H1299 and HTB-182: human cell lines;
LLC1: murine lung cancer cell line; TTFields: Tumor Treating Fields.

5.2. TTFields Therapy Concomitant with Taxanes: Ovarian Cancer

Systemic SOC in advanced ovarian cancer consists of surgery, a platinum-based dou-
blet (carboplatin and paclitaxel) with or without bevacizumab and eventual maintenance
PARPi [15]. Preclinical data show a substantial reduction in ovarian cancer cell populations
(A2780, OVCAR-3, Caov-3), as well as reduced cancer cell viability with the TTFields
(200 kHz) treatment concomitant with paclitaxel, vs. paclitaxel alone (Figure 4A) [28].
Furthermore, in vivo murine models resulted in significantly lower tumor volume with
the TTFields treatment concomitant with paclitaxel compared to sham-treated controls
(p < 0.001) and mice treated with either paclitaxel alone (p < 0.05) or the TTFields treatment
alone (p < 0.05) (Figure 4B) [28]. As a result of these promising preclinical data, paclitaxel
and TTFields therapy has been evaluated in patients with ovarian cancer.

INNOVATE was a phase 11, single-arm study assessing TTFields (200 kHz) therapy
with paclitaxel in platinum-resistant ovarian cancer (PROC) (EF-22; NCT02244502) [47].
Overall, 31 heavily pre-treated patients (median age 60, range 45-77 years; median prior
chemotherapy lines 4, range 1-11; median prior platinum lines 2, range 0-9) received weekly
paclitaxel (80 mg/m?) concomitant with TTFields therapy [47]. The primary endpoint was
safety; secondary endpoints included the OS, PFS, and response rate [47].

Twenty-six patients (84%) experienced mild-to-moderate (grade 1-2) TTFields therapy-
related dermatitis and 2 patients (6%) experienced grade 3 TTFields therapy-related der-
matitis; 1 patient (3%) permanently discontinued TTFields therapy due to dermatitis [47].
In terms of events likely associated with paclitaxel, grade 1-2 neutropenia was observed in
3% of patients, grade 3—4 neutropenia in 10% of patients, and grade 1-2 neuropathy in 45%
of patients [47,84]. Overall, 32% of patients experienced serious AEs, all of which could
be attributed to the underlying malignancy, previous or concomitant systemic therapy, or
general health condition [47].
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Figure 4. The efficacy of the TTFields treatment and paclitaxel on (A) human ovarian cell line (A2780,
OVCARS3, Caov-3) count and (B) tumor volume for in vivo murine model figure. * p < 0.05 and
**p <0.001. A2780: OVCARS, Caov-3, human ovarian cancer cell lines; p/s/sr: photons per second
per steradian; TTFields: Tumor Treating Fields.

The median OS was not reached in INNOVATE (Figure 5A); OS rates at 6 and
12 months were 90% (95% confidence interval [CI], 72-97) and 61% (95% CI, 37-78), respec-
tively. The median PFS was 8.9 months (95% CI, 4.7-not available) and partial responses
were observed in 25% of patients (Figure 5B) [47]. Survival outcomes from INNOVATE
were markedly improved compared to those cited in the literature, with one study reporting
the OS and PFS for heavily pretreated patients in receipt of SOC therapies after their fourth
relapse, as 6.2 months (95% CI, 5.1-7.7) and 4.4 months (95% CI, 3.7-4.0), respectively [96].
In INNOVATE, 71% of patients experienced a clinical benefit (stable disease or partial re-
sponse). TTFields therapy usage was high with 77% of patients using it for 18 h/day in the
first 3 months, and there were no paclitaxel dose reductions, suggesting good tolerability
of this concomitant treatment regimen. The lack of additive systemic toxicity, encouraging
survival outcomes, and high TTFields therapy usage provided a rationale for a larger phase
I study (ENGOT-ov50/GOG-3029/INNOVATE-3).

ENGOT-ov50/GOG-3029 /INNOVATE-3 (EF-28; NCT03940196) is a phase III prospec-
tive randomized study designed to evaluate the efficacy and safety of TTFields (200 kHz)
therapy with weekly paclitaxel in patients with PROC. A total of 540 patients have been
randomized 1:1 to either the experimental (TTFields therapy and weekly paclitaxel) or
comparator arm (weekly paclitaxel alone) [97,98]. The primary endpoint is the OS, and key
secondary endpoints include PFS, objective response rate, and QoL [97,98].
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Figure 5. (A) OS and (B) PFS in heavily pre-treated patients with PROC receiving TTFields ther-
apy concomitant with weekly paclitaxel [47]. OS: overall survival; PFS: progression-free survival;
PROC: platinum-resistant ovarian cancer; TTFields: Tumor Treating Fields.

5.3. TTFields Therapy Concomitant with Taxanes: Pancreatic Cancer

Nab-paclitaxel (protein-bound paclitaxel) with gemcitabine is a SOC regimen in pa-
tients with pancreatic cancer [99], however poor survival necessitates an improvement
in efficacy. Despite this need, it is challenging to identify treatments that can be admin-
istered concomitantly with nab-paclitaxel and gemcitabine, due to the risk of increasing
potential systemic toxicities [100]. Given the low risk of systemic toxicity associated with
TTFields therapy [23], evaluation of TTFields therapy concomitant with gemcitabine and
nab-paclitaxel is warranted. In vitro application of TTFields (150 kHz) treatment with
paclitaxel showed a substantial decrease in human pancreatic cancer cell (AsPC-1) count
vs. paclitaxel alone (Figure 6) [29]. As such, clinical studies evaluating the use of TTFields
therapy concomitant with paclitaxel in patients with locally advanced pancreatic cancer
have been conducted.
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Figure 6. The effect of the TTFields treatment with paclitaxel on human pancreatic cancer cell line
AsPC-1 cell viability. AsPC-1: human pancreatic cancer cell line; TTFields: Tumor Treating Fields.

PANOVA was a multicenter, open-label phase II study assessing TTFields (150 kHz) ther-
apy concomitant with gemcitabine or TTFields therapy concomitant with gemcitabine and nab-
paclitaxel in advanced pancreatic ductal adenocarcinoma (EF-20; NCT01971281) [44]. Overall,
40 patients were assigned 1:1 to receive TTFields therapy concomitant with weekly gemc-
itabine (1000 mg/m?) or TTFields therapy concomitant with weekly gemcitabine (1000 mg/m?)
and nab-paclitaxel (125 mg/m?) [44]. The median age was 73 years (range 49-81) in the
TTFields therapy and gemcitabine treatment arm, and 69 years (range 58-81) in the TTFields
therapy, gemcitabine, and nab-paclitaxel treatment arm [44]. The primary endpoint was safety,
and the secondary endpoints included TTFields therapy usage time, PFS, and OS [44].

There were no serious TTFields therapy-related AEs in either treatment arm; 21 (53%)
patients reported TTFields therapy-related skin irritation, of which 7 were grade 3 (18%),
and all were resolved following temporary reduction of daily TTFields therapy usage [44].
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Furthermore, there was no increase in serious AEs overall compared to that expected
with chemotherapy alone [44]. Peripheral neuropathy led to a treatment interruption of
nab-paclitaxel in 20% of patients; however, all cases were grade < 4. Grade 34 neutropenia
was reported in 35% of patients in the TTFields therapy, gemcitabine, and nab-paclitaxel
treatment arm, and 20% of patients in the TTFields therapy and gemcitabine treatment
arm [44]. The number of patients experiencing neuropathy and neutropenia is in line
with previous literature on taxanes [82]. TTFields therapy usage time was 68-78% of the
recommended average daily use of 18 h/day in both arms [44].

In the TTFields therapy, gemcitabine, and nab-paclitaxel arm, the median OS was not
reached (Figure 7A); the 12-month survival rate was 72% (95% CI, 44-88) and median PFS
was 12.7 months (95% CI, 5.4-NA) (Figure 7B) [44]. These results are improved compared
to results from a similar phase II trial (NCT02301143), where the median OS and PFS
for patients with pancreatic neoplasms treated with gemcitabine and nab-paclitaxel was
18.8 (90% CI, 15.0-24.0) and 10.9 months (90% CI, 9.3-11.6), respectively [101]. Based
on these data, further evaluation of TTFields therapy concomitant with gemcitabine and
nab-paclitaxel was warranted.
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Figure 7. (A) OS and (B) PFS in patients with PDAC receiving TTFields therapy concomitant with
gemcitabine and nab-paclitaxel [44]. OS: overall survival; PDAC: pancreatic duct adenocarcinoma;
PFS: progression-free survival; TTFields: Tumor Treating Fields.

PANOVA-3 is a prospective, randomized, open-label, phase III study designed to
assess the efficacy and safety of TTFields (150 kHz) therapy concomitant with gemcitabine
and nab-paclitaxel compared to gemcitabine and nab-paclitaxel, in patients with treatment-
naive locally advanced pancreatic adenocarcinoma (EF-27; NCT03377491) [102,103]. The
study aims to enroll 556 patients who will be randomized 1:1 to receive either TTFields
therapy concomitant with gemcitabine and nab-paclitaxel or SOC (gemcitabine with nab-
paclitaxel) [102,103]. The primary endpoint is OS; whereas, safety, PFS, objective response
rate, and QoL are the key secondary endpoints [102,103].

6. TTFields Therapy Concomitant with Taxanes: Other Cancers

Promising outcomes from clinical studies in ovarian and pancreatic cancer and pre-
clinical studies in NSCLC highlight the possible benefit of TTFields therapy concomitant
with taxanes in other aggressive solid tumors. Early preclinical studies of TTFields treat-
ment concomitant with paclitaxel in human breast carcinoma (150 kHz) and human GBM
(200 kHz) illustrated an additive effect with a synergistic tendency to reduce cell count
(Figure 8) [27,90]. Furthermore, in cells isolated from NSCLC brain metastases, TTFields
(150 kHz) treatment and paclitaxel resulted in a significantly diminished clonogenic poten-
tial vs. untreated controls or either treatment applied singularly [104]. Preclinical findings
in NSCLC brain metastases and on the BBB provide rationale for investigation in a clinical
setting. The phase III METIS study (EF-25; NCT02831959) investigating TTFields (150 kHz)
therapy with SOC in patients with brain metastases from NSCLC is ongoing.
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Figure 8. The effects of 72-h exposure of human breast carcinoma (MDA-MB-231) cells to paclitaxel
alone at different concentrations and concomitant with TTFields treatment [90]. TTFields, Tumor
Treating Fields.

7. TTFields Therapy Concomitant with Taxanes: Summary of Clinical Efficacy and Safety

Taken together, the data demonstrate that, when utilized concomitantly with taxanes,
TTFields act by preventing tumor cell proliferation, as well as sensitizing cells to the effects
of taxanes [28-30,90]. In NSCLC, ovarian, and pancreatic cell lines, a reduction in cancer cell
viability was observed when TTFields were applied with paclitaxel (Figures 3, 4 and 6) [28-30].
TTFields treatment together with paclitaxel led to a reduction in murine NSCLC and ovarian
tumor volume vs. paclitaxel alone [28,30]. As taxanes are fundamental treatments for many
solid tumors, the preclinical data highlight the need to further investigate the concomitant use
of TTFields therapy with taxanes in a clinical setting.

Clinical data thus far have indicated that TTFields therapy does not increase systemic
toxicity when used concomitantly with other chemotherapeutics or treatments in ovarian
and pancreatic cancers [44,47]. The most common TTFields therapy-related AE was local
skin irritation beneath arrays, consistent between different studies and different cancer
types [44,47]. There were no serious TTFields therapy-related AEs in either study [44,47].
Although patients did experience neuropathy, commonly associated with taxanes, the
addition of TTFields therapy did not exaggerate this effect [44,47]. Grade 34 neutropenia
occurrence was low (10%) in the ovarian cancer study, but higher (35%) in the pancreatic
cancer study, which may be explained by the addition of gemcitabine to the regimen, which
is also associated with neutropenia [44,47].

8. Conclusions

Since their introduction, taxanes have been key treatments for a range of solid tumors.
NSCLC, ovarian cancer, and pancreatic cancer have a high prevalence and are leading
causes of cancer-related deaths. The SOC for these cancers is often associated with a poor
AE profile and combinatorial treatment options should enhance the efficacy of established
treatment options, without substantial additive systemic toxicity.

TTFields therapy is a non-invasive locoregional treatment, and an ideal candidate
to be used with existing cancer therapies due to its multimodal mechanism of action
and low risk of systemic toxicity. Preclinical data provided the rationale to investigate
TTFields therapy concomitant with taxanes in clinical studies, which showed efficacy and
tolerability in ovarian and pancreatic cancer, and further studies are ongoing. TTFields
therapy concomitant with taxanes offers a promise of an innovative treatment regimen in
these aggressive solid tumors.
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