94 research outputs found
Millisecond Exoplanet Imaging, I: Method and Simulation Results
One of the top remaining science challenges in astronomical optics is the
direct imaging and characterization of extrasolar planets and planetary
systems. Directly imaging exoplanets from ground-based observatories requires
combining high-order adaptive optics with a stellar coronagraph observing at
wavelengths ranging from the visible to the mid-IR. A limiting factor in
achieving the required contrast (planet-to-star intensity ratio) is
quasi-static speckles, caused largely by non-common path aberrations (NCPA) in
the coronagraph. Starting with a realistic simulator of a telescope with an AO
system and a coronagraph, this article provides simulations of several closely
related millisecond regression models requiring inputs of the measured
wavefronts and science camera images. The simplest regression model, called the
naive estimator, does not treat the noise and other sources of information loss
in the WFS. The naive estimator provided a useful estimate of the NCPA of
0.5 radian RMS, with an accuracy of 0.06 radian RMS in one minute
of simulated sky time on a magnitude 8 star. The bias-corrected estimator
generalizes the regression model to account for the noise and information loss
in the WFS. A simulation of the bias-corrected estimator with four minutes of
sky time included an NCPA of radian RMS and an extended
exoplanet scene. The joint regression of the bias-corrected estimator
simultaneously achieved an NCPA estimate with an accuracy of radian and contrast of on the exoplanet scene.
In addition, the estimate of the exoplanet image was completely free of the
subtraction artifacts that always plague differential imaging. The estimate of
the exoplanet image obtained by the joint regression was nearly identical to
the image obtained by subtraction of a perfectly known point-spread function.Comment: 16 pages, 18 Figures, 4 Tables, submitted to JOSA
A Global Two-temperature Corona and Inner Heliosphere Model: A Comprehensive Validation Study
The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B , Advanced Composition Explorer ( ACE ), and Venus Express , we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory /Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode /Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE /Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98628/1/0004-637X_745_1_6.pd
Thermodynamic Structure of the Solar Corona: Tomographic Reconstructions and MHD Modeling
We carry out a study of the global three-dimensional (3D) structure of the
electron density and temperature of the quiescent inner solar corona () by means of tomographic reconstructions and magnetohydrodynamic
simulations. We use differential emission measure tomography (DEMT) and the
Alfv\'en Wave Solar Model (AWSoM), in their latest versions. Two target
rotations were selected from the solar minimum between solar cycles (SCs) 23
and 24 and the declining phase of SC 24. We report in quantitative detail on
the 3D thermodynamic structure of the core and outer layers of the streamer
belt, and of the high latitude coronal holes (CH), as revealed by the DEMT
analysis. We report on the presence of two types of structures within the
streamer belt, loops with temperature decreasing/increasing with height (dubbed
down/up loops), as reported first in previous DEMT studies. We also estimate
the heating energy flux required at the coronal base to keep these structures
stable, found to be or order , consistently with
previous DEMT and spectroscopic studies. We discuss how these findings are
consistent with coronal dissipation of Alfv\'en waves. We compare the 3D
results of DEMT and AWSoM in distinct magnetic structures. We show that the
agreement between the products of both techniques is the best so far, with an
overall agreement , depending on the target rotation and the
specific coronal region. In its current implementation the ASWsoM model can not
reproduce down loops though. Also, in the source region of the fast and slow
components of the solar wind, the electron density of the AWSoM model increases
with latitude, opposite to the trend observed in DEMT reconstructions
Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes
Direct detection, also known as direct imaging, is a method for discovering
and characterizing the atmospheres of planets at intermediate and wide
separations. It is the only means of obtaining spectra of non-transiting
exoplanets. Characterizing the atmospheres of planets in the <5 AU regime,
where RV surveys have revealed an abundance of other worlds, requires a
30-m-class aperture in combination with an advanced adaptive optics system,
coronagraph, and suite of spectrometers and imagers - this concept underlies
planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the
GMT (GMagAO-X). These instruments could provide astrometry, photometry, and
spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas
giants. For the first time habitable zone exoplanets will become accessible to
direct imaging, and these instruments have the potential to detect and
characterize the innermost regions of nearby M-dwarf planetary systems in
reflected light. High-resolution spectroscopy will not only illuminate the
physics and chemistry of exo-atmospheres, but may also probe rocky, temperate
worlds for signs of life in the form of atmospheric biomarkers (combinations of
water, oxygen and other molecular species). By completing the census of
non-transiting worlds at a range of separations from their host stars, these
instruments will provide the final pieces to the puzzle of planetary
demographics. This whitepaper explores the science goals of direct imaging on
30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of
the NA
How to use magnetic field information for coronal loop identification?
The structure of the solar corona is dominated by the magnetic field because
the magnetic pressure is about four orders of magnitude higher than the plasma
pressure. Due to the high conductivity the emitting coronal plasma (visible
e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the
emitting plasma structures is significantly lower parallel to the magnetic
field lines than in the perpendicular direction. Consequently information
regarding the coronal magnetic field can be used for the interpretation of
coronal plasma structures. We extrapolate the coronal magnetic field from
photospheric magnetic field measurements into the corona. The extrapolation
method depends on assumptions regarding coronal currents, e.g. potential fields
(current free) or force-free fields (current parallel to magnetic field). As a
next step we project the reconstructed 3D magnetic field lines on an EIT-image
and compare with the emitting plasma structures. Coronal loops are identified
as closed magnetic field lines with a high emissivity in EIT and a small
gradient of the emissivity along the magnetic field.Comment: 14 pages, 3 figure
Directly Imaging Rocky Planets from the Ground
Over the past three decades instruments on the ground and in space have
discovered thousands of planets outside the solar system. These observations
have given rise to an astonishingly detailed picture of the demographics of
short-period planets, but are incomplete at longer periods where both the
sensitivity of transit surveys and radial velocity signals plummet. Even more
glaring is that the spectra of planets discovered with these indirect methods
are either inaccessible (radial velocity detections) or only available for a
small subclass of transiting planets with thick, clear atmospheres. Direct
detection can be used to discover and characterize the atmospheres of planets
at intermediate and wide separations, including non-transiting exoplanets.
Today, a small number of exoplanets have been directly imaged, but they
represent only a rare class of young, self-luminous super-Jovian-mass objects
orbiting tens to hundreds of AU from their host stars. Atmospheric
characterization of planets in the <5 AU regime, where radial velocity (RV)
surveys have revealed an abundance of other worlds, is technically feasible
with 30-m class apertures in combination with an advanced AO system,
coronagraph, and suite of spectrometers and imagers. There is a vast range of
unexplored science accessible through astrometry, photometry, and spectroscopy
of rocky planets, ice giants, and gas giants. In this whitepaper we will focus
on one of the most ambitious science goals --- detecting for the first time
habitable-zone rocky (<1.6 R_Earth) exoplanets in reflected light around nearby
M-dwarfsComment: 8 pages, 1 figure, Astro2020 Science White Pape
Computational lens for the near field
A method is presented to reconstruct the structure of a scattering object from data acquired with a photon scanning tunneling microscope. The data may be understood to form a Gabor type near-field hologram and are obtained at a distance from the sample where the field is defocused and normally uninterpretable. Object structure is obtained by the solution of the inverse scattering problem within the accuracy of a perturbative, two-dimensional model of the object
- …