59 research outputs found

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    Mapping targets for small nucleolar RNAs in yeast

    Get PDF
    Background: Recent analyses implicate changes in the expression of the box C/D class of small nucleolar RNAs (snoRNAs) in several human diseases. Methods: Here we report the identification of potential novel RNA targets for box C/D snoRNAs in budding yeast, using the approach of UV crosslinking and sequencing of hybrids (CLASH) with the snoRNP proteins Nop1, Nop56 and Nop58. We also developed a bioinformatics approach to filter snoRNA-target interactions for bona fide methylation guide interactions. Results: We recovered 241,420 hybrids, out of which 190,597 were classed as reproducible, high energy hybrids. As expected, the majority of snoRNA interactions were with the ribosomal RNAs (rRNAs). Following filtering, 117,047 reproducible hybrids included 51 of the 55 reported rRNA methylation sites. The majority of interactions at methylation sites were predicted to guide methylation. However, competing, potentially regulatory, binding was also identified. In marked contrast, following CLASH performed with the RNA helicase Mtr4 only 7% of snoRNA-rRNA interactions recovered were predicted to guide methylation. We propose that Mtr4 functions in dissociating inappropriate snoRNA-target interactions. Numerous snoRNA-snoRNA interactions were recovered, indicating potential cross regulation. The snoRNAs snR4 and snR45 were recently implicated in site-directed rRNA acetylation, and hybrids were identified adjacent to the acetylation sites. We also identified 1,368 reproducible snoRNA-mRNA interactions, representing 448 sites of interaction involving 39 snoRNAs and 382 mRNAs. Depletion of the snoRNAs U3, U14 or snR4 each altered the levels of numerous mRNAs. Targets identified by CLASH were over-represented among these species, but causality has yet to be established. Conclusions: Systematic mapping of snoRNA-target binding provides a catalogue of high-confidence binding sites and indicates numerous potential regulatory interactions

    Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora)

    Get PDF
    Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing.The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales.We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family

    Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies

    Get PDF
    T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms

    Genetic architecture:The shape of the genetic contribution to human traits and disease

    Get PDF

    A novel autoantibody test for the detection of pre-neoplastic lung lesions

    No full text

    Changes in levels of biomarkers of exposure and biological effect in a controlled study of smokers switched from conventional cigarettes to reduced-toxicant-prototype cigarettes

    Get PDF
    AbstractBackgroundDevelopment of cigarettes that reduce exposure to harmful smoke constituents is a suggested tobacco harm reduction strategy, but robust methods for measurement of change are required. We investigated whether changes in biomarkers of exposure (BoE), effective dose (BoED) and biological effect (BoBE) could be detected after switching from conventional cigarettes to a reduced-toxicant-prototype cigarette (RTP).MethodsRegular smokers of 6–8mg ISO tar yield cigarettes were recruited in Hamburg, Germany, and supplied with a conventional 7mg ISO tar yield cigarette for 2weeks then switched to the same cigarette with a different tipping paper (control) or the RTP for 6months. Subjects smoked mostly at home and attended five residential clinic visits where urine and blood samples were collected for analysis. Primary endpoints were changes in specific biomarker levels compared with non-smoker background levels. Changes in daily cigarette consumption were also investigated.ResultsBoE levels in controls generally increased over the study period, whereas most BoE and all BoED significantly declined in RTP smokers. Most BoBE data were similar across groups and/or too variable within individuals to detect changes. Increased daily cigarette consumption was affected by supply of free cigarettes, perceived shorter smoking time per cigarette than usual brands, and perceived reduced harm.ConclusionsDespite increased cigarette consumption, reductions in BoE and BoED were detectable

    Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects

    No full text
    Background: Iron supplements may inhibit intestinal zinc and copper uptake because these elements may compete for binding to a transporter molecule (divalent metal transporter 1) that is located on the apical side of the small intestinal epithelium. Objective: We quantified the interaction between different amounts of administered iron and the absorption of zinc and copper in humans. Design: Eleven subjects with an ileostomy [mean (±SD) age: 55 ± 9 y] ingested a stable-isotope-labeled zinc and copper solution containing 12 mg Zn (66Zn and 67Zn) and 3 mg Cu (65Cu) in the presence of 0, 100, or 400 mg Fe as ferrous gluconate on 3 respective test days. Subsequently, 1 mg 70Zn was injected intravenously. Subjects collected ileostomy effluent and urine for 24 h and 7 d, respectively. Zinc status and true zinc absorption were calculated from the urinary excretion of the zinc isotopes. Apparent copper absorption was calculated from ileostomy effluent excretion of the orally administered copper isotopes. Results: Zinc status did not differ significantly between the 3 iron doses. Mean (±SEM) zinc absorption was significantly higher in the absence of iron than with the concomitant ingestion of 100 or 400 mg Fe (44 ± 22% compared with 26 ± 14% and 23 ± 6%, respectively; P < 0.05), whereas zinc absorption did not differ significantly between the 100- and 400-mg Fe doses. Apparent copper absorption was 48 ± 14%, 54 ± 26%, and 53 ± 7% in the presence of 0, 100, and 400 mg Fe, respectively, and did not differ significantly between the 3 iron doses. Conclusion: Oral iron therapy may impair zinc absorption and thus zinc status in a dose-independent fashion but does not affect copper absorption
    • …
    corecore