2,243 research outputs found

    Dynamical Realization of Macroscopic Superposition States of Cold Bosons in a Tilted Double Well

    Full text link
    We present exact expressions for the quantum sloshing of Bose-Einstein condensates in a tilted two-well potential. Tunneling is suppressed by a small potential difference between wells, or tilt. However, tunneling resonances occur for critical values of the tilt when the barrier is high. At resonance, tunneling times on the order of 10-100 ms are possible. Furthermore, such tilted resonances lead to a dynamical scheme for creating few-body NOON-like macroscopic superposition states which are protected by the many body wavefunction against potential fluctuations.Comment: 6 pages, 5 figures, final version, only minor changes from previous arXiv versio

    Iatrogenic acute angle closure glaucoma masked by general anaesthesia and intensive care.

    Get PDF
    Acute angle closure glaucoma is a medical emergency which can result in blindness. As it is very painful patients are usually referred rapidly to an ophthalmologist. If it occurs following general anaesthesia however, the diagnosis may not be considered and symptoms such as pain and vomiting wrongly attributed. Delayed diagnosis puts the patient at risk both from the ocular complications of acute angle closure glaucoma, and also from inappropriate investigation and intervention. We report an illustrative case where bilateral acute angle closure glaucoma followed a general anaesthetic. The correct diagnosis was delayed for 11 days

    Observation of a Large Atomic Parity Violation Effect in Ytterbium

    Full text link
    Atomic parity violation has been observed in the 6s^2 1S0 - 5d6s 3D1 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be two orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron skins and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition

    A Deep Radio Survey of Abell 2125 III: The Cluster Core - Merging and Stripping

    Get PDF
    We use radio, near-IR, optical, and X-ray observations to examine dynamic processes in the central region of Abell 2125. In addition to the central triple, including members of both major dynamical subsystems identified from a redshift survey, this region features a galaxy showing strong evidence for ongoing gas stripping during a high-velocity passage through the gas in the cluster core. The disk galaxy C153 exhibits a plume stretching toward the cluster center seen in soft X-rays by Chandra, parts of which are also seen in [O II] emission and near-UV continuum light. HST imaging shows a distorted disk, with star-forming knots asymmetrically distributed and remnant spiral structure possibly defined by dust lanes. The stars and ionized gas in its disk are kinematically decoupled, demonstrating that pressure stripping must be important, and that tidal disruption is not the only mechanism at work. Comparison of the gas properties seen in the X-ray and optical data on the plume highlight significant features of the history of stripped gas in the intracluster medium. The nucleus of C153 also hosts an AGN, shown by the weak and distorted extended radio emission and a radio compact core. The unusual strength of the stripping signatures in this instance is likely related to the high relative velocity of the galaxy with respect to the intracluster medium, during a cluster/cluster merger, and its passage very near the core of the cluster. Another sign of recent dynamical events is diffuse starlight asymmetrically placed about the central triple in a cD envelope. Transient and extreme dynamical events as seen in Abell 2125 may be important drivers of galaxy evolution in the cores of rich clusters.Comment: 36 pages, 16 figures, accepted AJ, paper with full resolution figures is available at http:www.aoc.nrao.edu/~fowen/papers/a2125/a2125paper3.ps.g

    Control of atomic currents using a quantum stirring device

    Full text link
    We propose a BEC stirring device which can be regarded as the incorporation of a quantum pump into a closed circuit: it produces a DC circulating current in response to a cyclic adiabatic change of two control parameters of an optical trap. We demonstrate the feasibility of this concept and point out that such device can be utilized in order to probe the interatomic interactions.Comment: 5 pages, 4 figures, uses epl2.cls, revised versio

    Dispersion-Theoretical Analysis of the Nucleon Electromagnetic Formfactors

    Full text link
    Dispersion relations allow for a coherent description of the nucleon electromagnetic form factors measured over a large range of momentum transfer, Q2035Q^2 \simeq 0 \ldots 35 GeV2^2. Including constraints from unitarity and perturbative QCD, we present a novel parametrisation of the absorptive parts of the various isoscalar and isovector nucleon form factors. Using the current world data, we obtain results for the electromagnetic form factors, nucleon radii and meson couplings. We stress the importance of measurements at large momentum transfer to test the predictions of perturbative QCD.Comment: 33 pp, RevTEX or plain LaTeX, 7 figures (in ffig.uu

    Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order

    Get PDF
    We calculate the imaginary parts of the isoscalar scalar and isovector electromagnetic form factors of the nucleon up to two-loop order in chiral perturbation theory. Particular attention is paid on the correct behavior of Im σN(t)\sigma_N(t) and Im GE,MV(t)G_{E,M}^V(t) at the two-pion threshold t0=4mπ2t_0=4 m_\pi^2 in connection with the non-relativistic 1/M-expansion. We recover the well-known strong enhancement near threshold originating from the nearby anomalous singularity at tc=4mπ2mπ4/M2=3.98mπ2t_c = 4m_\pi^2-m_\pi^4/M^2 = 3.98 m_\pi^2. In the case of the scalar spectral function Im σN(t)\sigma_N(t) one finds a significant improvement in comparison to the lowest order one-loop result. Higher order ππ\pi\pi-rescattering effects are however still necessary to close a remaining 20%-gap to the empirical scalar spectral function. The isovector electric and magnetic spectral functions Im GE,MV(t)G_{E,M}^V(t) get additionally enhanced near threshold by the two-pion-loop contributions. After supplementing their two-loop results by a phenomenological ρ\rho-meson exchange term one can reproduce the empirical isovector electric and magnetic spectral functions fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review

    Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

    No full text
    1. The rate of elongation and thickening of individual branches (shoots) varies across plant species. This variation is important for the outcome of competition and other plant-plant interactions. Here we compared rates of shoot growth across 44 species from tropical, warm temperate, and cool temperate forests of eastern Australia.2. Shoot growth rate was found to correlate with a suite of traits including the potential height of the species, xylem-specific conductivity, leaf size, leaf area per xylem cross-section, twig diameter (at 40 cm length), wood density and modulus of elasticity.3. Within this suite of traits, maximum plant height was the clearest correlate of growth rates, explaining 50 to 67% of the variation in growth overall (p p 4. Growth rates were not strongly correlated with leaf nitrogen or leaf mass per unit leaf area.5. Correlations between growth and maximum height arose both across latitude (47%, p p p p < 0.0001), reflecting intrinsic differences across species and sites
    corecore