75 research outputs found

    Electrophoretic origin of long-range repulsion of colloids near water/Nafion interfaces

    Get PDF
    The ICN2 is funded by the CERCA program/Generalitat de Catalunya.One of the most striking properties of Nafion is the formation of a long-range solute exclusion zone (EZ) in contact with water. The mechanism of formation of this EZ has been the subject of a controversial and long-standing debate. Previous studies by Schurr et al. and Florea et al. root the explanation of this phenomenon in the ion-exchange properties of Nafion, which generates ion diffusion and ion gradients that drive the repulsion of solutes by diffusiophoresis. Here we have evaluated separately the electrophoretic and chemiphoretic contributions to multi-ionic diffusiophoresis using differently charged colloidal tracers as solutes to identify better their contribution in the EZ formation. Our experimental results, which are also supported by numerical simulations, show that the electric field, built up due to the unequal diffusion coefficients of the exchanged ions, is the dominant parameter behind such interfacial phenomenon in the presence of alkali metal chlorides. The EZ formation depends on the interplay of the electric field with the zeta potential of the solute and can be additionally modulated by changing ion diffusion coefficients or adding salts. As a consequence, we show that not all solutes can be expelled from the Nafion interface and hence the EZ is not always formed. This study thus provides a more detailed description of the origin and dynamics of this phenomenon and opens the door to the rational use of this active interface for many potential applications

    M81 Extragalactic nova explosions

    Get PDF
    Using data from the Joan Oró telescope (located in Montsec, Catalonia) and the reference catalogue from Max Planck Institute, we will observe the evolution of different novae in the M81 galaxy. This article explains the data analysis that has been performed and comments the obtained results2020/202

    Nanomechanics: A new approach for studying the mechanical properties of materials

    Get PDF
    Mitjançant l'espectroscòpia de forces atòmiques s'ha estudiat la resposta nanomecànica a la nanoindentació de la superfície més estable d'un material trencadís FCC, com és ara el MgO (100). L'expulsió del material en forma de capes demostra que la fallida trencadissa implica, de fet, l'inici de la deformació plàstica o estrès crític, i que la deformació plàstica posterior consisteix en una sèrie d'esdeveniments discrets. Es pot determinar amb precisió el mòdul de Young, E, a partir de la regió de deformació elàstica mitjançant una mecànica senzilla, atesa l'absència de dislocacions induïdes per la nanoindentació. Amb aquesta finalitat s'ha desenvolupat un nou model fisicomatemàtic, que té en compte les interaccions laterals. El valor de l'estrès crític de fricció també s'ha calculat i comentat. Com a conseqüència d'aquesta expulsió en capes, també s'ha estudiat la resposta nanomecànica de superfícies de capes primes (gruix & 1 µm) de molècules orgàniques altament orientades, ja que es tracta de materials en capes amb interaccions de tipus Van der Waals. També en aquests materials la superfície es deforma plàsticament i presenta discontinuïtats discretes en les corbes d'indentació, associades ara a les capes moleculars expulsades per l'indentador. En el cas del metall quasiunidimensional tetratiofulvalè tetracianoquinodimetà (TTFTCNQ), el valor del mòdul de Young, E & 20 GPa, coincideix amb l'obtingut per altres mètodes. En el cas de la fase ! del radical p-nitrofenil nitronil nitròxid (p-NPNN) no es disposa d'informació per a monocristalls, i el valor obtingut per a les capes primes és de E & 2 GPa.Atomic force spectroscopy was used to study the nanomechanical response to nanoindentations on the most stable face (100) of FCC brittle materials such as MgO and alkali halides. The layered expulsion of material demonstrates that brittle failure results from the critical stress brought on by plastic deformation and that plastic deformation consists of a series of discrete events. Due to the absence of indentation- induced dislocations, Young?s modulus E can be correctly estimated from the elastic deformation region using simple mechanics. A new model is developed taking into account lateral interactions. Critical shear stress is also evaluated and discussed. As a result of the layered expulsion we also studied the nanomechanical response of surfaces of highly-oriented molecular organic thin films (ca. 1 µm thickness) because these are Van der Waals layered materials. The surfaces were again found to deform plastically and there were discrete discontinuities in the indentation curves, representing the molecular layers being expelled by the penetrating tip. Here, the Hertz model is quite good at revealing the role of lateral interactions in the indentation process. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) the value of Young?s modulus, E & 20 GPa, coincides with that obtained by other bulk methods. For the !-phase of the p-nitrophenyl nitronyl nitroxide (p-NPNN) radical, no information is available for single crystals and the estimated value obtained for the film is E & 2 GPa

    Quantification of nanomechanical properties of surfaces by higher harmonic monitoring in amplitude modulated AFM imaging

    Get PDF
    Altres ajuts: the ICN2 is funded by the CERCA programme/Generalitat de Catalunya.The determination of nanomechanical properties is an intensive topic of study in several fields of nanophysics, from surface and materials science to biology. At the same time, amplitude modulation force microscopy is one of the most established techniques for nanoscale characterization. In this work, we combine these two topics and propose a method able to extract quantitative nanomechanical information from higher harmonic amplitude imaging in atomic force microscopy. With this method it is possible to discriminate between different materials in the stiffness range of 1-3 GPa, in our case thin films of PS-PMMA based block copolymers. We were able to obtain a critical lateral resolution of less than 20 nm and discriminate between materials with less than a 1 GPa difference in modulus. We show that within this stiffness range, reliable values of the Young's moduli can be obtained under usual imaging conditions and with standard dynamic AFM probes

    Superconductivity in TTF[Ni(dmit)2]2 films

    Get PDF
    We report on the observation of a superconducting transition in a fiber-like film of the TTF[Ni(dmit)2]2 phase electrodeposited on silicon substrates. Superconductivity is evidenced by a broad drop of the resistance below 0.8K under the application of a hydrostatic pressure of 7.7 kbar. Zero resistance is not reached due to the contribution of inter-fiber resistance. Superconductivity is confirmed by the application of a magnetic field perpendicular to the plane of the film. The critical field determined on the film is in agreement with that obtained in bulk single crystals

    A statistical analysis of nanocavities replication applied to injection moulding

    Get PDF
    The purpose of this paper is to investigate both theoretically and experimentally how nanocavities are replicated in the injection moulding manufacturing process. The objective is to obtain a methodology for efficiently replicate nanocavities. From the theoretical point of view, simulations are carried out using a submodeling approach combining Solidworks Plastics for a first macrosimulation and Fluent solver for a subsequent nanosimulation. The effect of the four main factors (melt temperature, mould temperature, filling time and cavity geometry) are quantified using an statistical 2 factorial experiment. It is found that the main effects are the cavity length, the mould temperature and the polymer temperature, with standardized effects of 5, 3 and 2.6, respectively. Filling time has a negative 1.3 standardized effect. From the experimental point of view, Focused Ion Beam technique is used for mechanizing nanocavities in a steel mould. The replication achieved in polycarbonate injection is quantified using an Atomic Force Microscope. It is observed how both the geometry and the position of the cavities in the mould affect its replication

    Role of penetrability into a brush-coated surface in directed self-assembly of block copolymers

    Get PDF
    Altres ajuts: the ICN2 is funded by the CERCA programme/Generalitat de Catalunya.High-density and high-resolution line and space patterns on surfaces are obtained by directed self-assembly of lamella-forming block copolymers (BCPs) using wide-stripe chemical guiding patterns. When the width of the chemical pattern is larger than the half-pitch of the BCP, the interaction energy between each BCP domain and the surface is crucial to obtain the desired segregated film morphology. We investigate how the intermixing between BCPs and polymer brush molecules on the surface influences the optimal surface and interface free energies to obtain a proper BCP alignment. We have found that computational models successfully predict the experimentally obtained guided patterns if the penetrability of the brush layer is taken into account instead of a hard, impenetrable surface. Experiments on directed self-assembly of lamella-forming poly(styrene-block-methyl methacrylate) using chemical guiding patterns corroborate the models used in the simulations, where the values of the surface free energy between the BCP and the guiding and background stripes are accurately determined using an experimental method based on the characterization of contact angles in droplets formed after dewetting of homopolymer blends

    From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures

    Get PDF
    Chemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows. The micropump is based on the cation-exchanger Nafion, which produces chemical gradients and local electric fields capable to trigger interfacial electroosmotic flows. Unidirectional pumping is predicted by simulations and achieved experimentally by nanostructuring Nafion into microarrays with a fine tune modulation of surrounding surface zeta potentials. Nafion micropumps work in a wide range of salt concentrations, are reusable, and can be fueled by different salt cations. We demonstrate that they work with the common water-contaminant cadmium, using the own capture of this ion as fuel to drive fluid pumping. Thus, this system has potential for efficient and fast water purification strategies for environmental remediation. Unidirectional Nafion pumps also hold promise for effective analyte delivery or preconcentration for (bio)sensing assays

    Oscillatory patterns in redox gradient materials through wireless bipolar electrochemistry. The dynamic wave-like case of copper bipolar oxidation

    Get PDF
    Altres ajuts: ICN2 is funded by the CERCA program/Generalitat de Catalunya.Bipolar electrochemistry allows the development of processes in a wireless manner, with reactions occurring at the induced anodes and cathodes of an immersed conducting material in the electrolyte. As a result, a gradient oxidation state may appear along the main axis field on the surface or bulk of the material depending on the type of reaction available at each induced potential. Redox intercalation gradients have been observed, metal anodization, or deposition, and also reactions at the electrolyte in the nearby environment of the poles induced. The complex oxidation of copper and interconversion between phases formed yields in this work an oscillating redox gradient, thanks to the great resistance change when the oxidized phases are formed. Parallel stripes containing mainly CuO, CuO, and Cu(OH) with large resistance are formed perpendicular to the electric field, forming a sequence of secondary dipoles in intermediate Cu stripes, that depends on the external voltage applied, and that oscillates in time at the same spatial coordinates. With longer times, copper solubilizes at the larger induced potential zones, probably as Cu(OH) . A simple finite element electrostatic model defines the complex potential waves induced in the piece. The resulting dynamics offer an example of the complexity of order in unwired conducting materials in wet media, either in catalysis, bioelectrodes, electronics, photovoltaics, or energy storage
    corecore