54 research outputs found

    SUMO: regulating the regulator

    Get PDF
    Post-translational modifiers of the SUMO (Small Ubiquitin-related Modifier) family have emerged as key regulators of protein function and fate. While the past few years have seen an enormous increase in knowledge on SUMO enzymes, substrates, and consequences of modification, regulation of SUMO conjugation is far from being understood. This brief review will provide an overview on recent advances concerning (i) the interplay between sumoylation and other post-translational modifications at the level of individual targets and (ii) global regulation of SUMO conjugation and deconjugation

    RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly

    Get PDF
    The RanGTPase activating protein RanGAP1 has essential functions in both nucleocytoplasmic transport and mitosis. In interphase, a significant fraction of vertebrate SUMO1-modified RanGAP1 forms a stable complex with the nucleoporin RanBP2/Nup358 at nuclear pore complexes. RanBP2 not only acts in the RanGTPase cycle but also is a SUMO1 E3 ligase. Here, we show that RanGAP1 is phosphorylated on residues T409, S428, and S442. Phosphorylation occurs before nuclear envelope breakdown and is maintained throughout mitosis. Nocodazole arrest leads to quantitative phosphorylation. The M-phase kinase cyclin B/Cdk1 phosphorylates RanGAP1 efficiently in vitro, and T409 phosphorylation correlates with nuclear accumulation of cyclin B1 in vivo. We find that phosphorylated RanGAP1 remains associated with RanBP2/Nup358 and the SUMO E2–conjugating enzyme Ubc9 in mitosis, hence mitotic phosphorylation may have functional consequences for the RanGTPase cycle and/or for RanBP2-dependent sumoylation

    SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport

    Get PDF
    SummaryReverse cholesterol transport (RCT) is an antiatherogenic process in which excessive cholesterol from peripheral tissues is transported to the liver and finally excreted from the body via the bile. The nuclear receptor liver receptor homolog 1 (LRH-1) drives expression of genes regulating RCT, and its activity can be modified by different posttranslational modifications. Here, we show that atherosclerosis-prone mice carrying a mutation that abolishes SUMOylation of LRH-1 on K289R develop less aortic plaques than control littermates when exposed to a high-cholesterol diet. The mechanism underlying this atheroprotection involves an increase in RCT and its associated hepatic genes and is secondary to a compromised interaction of LRH-1 K289R with the corepressor prospero homeobox protein 1 (PROX1). Our study reveals that the SUMOylation status of a single nuclear receptor lysine residue can impact the development of a complex metabolic disease such as atherosclerosis

    Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

    Get PDF
    Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Sonderforschungsbereich „Zelluläre Qualitätskontrolle“ : Wie reagieren Zellen auf Schäden und auf welche Weise gelingt es, Störungen des zellulären Gleichgewichts zu vermeiden oder auszugleichen?

    No full text
    "Campus-Report" heißt die Radiosendung der Universitäten Heidelberg, Mannheim, Karlsruhe und Freiburg. Die Reportagen über aktuelle Themen aus Forschung und Wissenschaft werden montags bis freitags jeweils um ca. 19.10h im Programm von Radio Regenbogen gesendet. (Empfang in Nordbaden: UKW 102,8. In Mittelbaden: 100,4 und in Südbaden: 101,1) Uni-Radio Baden: ein gemeinsames Projekt der Universitäten Freiburg, Heidelberg, Karlsruhe und Mannheim in Zusammenarbeit mit Radio Regenbogen – unterstützt von der Landesanstalt für Kommunikation. Sendung vom 15. August 201
    corecore