217 research outputs found

    Cultural differences in postnatal quality of life among German-speaking women - a prospective survey in two countries.

    Get PDF
    Assessment of quality of life after childbirth is an important health-outcome measurement for new mothers and is of special interest in midwifery. The Mother-Generated Index (MGI) is a validated instrument to assess postnatal quality of life. The tool has not been applied for making a cross-cultural comparison before. This study investigated (a) responses to the MGI in German-speaking women in Germany and Switzerland; and (b) associations between MGI scores on the one hand and maternity and midwifery care on the other

    The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)

    Get PDF
    Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research, have been developed for conventional central processing unit (CPU) architectures. This hinders the employment of such models on current top-performing supercomputers, which achieve their computing power with hybrid architectures, mostly using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer power of CPUs. Here we present the development of a GPU-enabled version of the ICON atmosphere model (ICON-A), motivated by a research project on the quasi-biennial oscillation (QBO), a global-scale wind oscillation in the equatorial stratosphere that depends on a broad spectrum of atmospheric waves, which originates from tropical deep convection. Resolving the relevant scales, from a few kilometers to the size of the globe, is a formidable computational problem, which can only be realized now on top-performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for the research project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing Centre and in a second step to the JUWELS Booster computer at the Forschungszentrum Jülich. On Piz Daint, the ported code achieves a single-node GPU vs. CPU speedup factor of 6.4 and allows for global experiments at a horizontal resolution of 5 km on 1024 computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On JUWELS Booster, the more modern hardware in combination with an upgraded code base allows for simulations at the same resolution on 128 computing nodes with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains functional on CPUs, as is demonstrated by additional experiments on the Levante compute system at the German Climate Computing Center. While the application shows good weak scaling over the tested 16-fold increase in grid size and node count, making also higher resolved global simulations possible, the strong scaling on GPUs is relatively poor, which limits the options to increase turnover with more nodes. Initial experiments demonstrate that the ICON-A model can simulate downward-propagating QBO jets, which are driven by wave–mean flow interaction

    Assessment of Uncertainties in Scenario Simulations of Biogeochemical Cycles in the Baltic Sea

    Get PDF
    Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.Peer reviewe

    Informal and formal reconciliation strategies of older peoples’ working carers: the European carers@work project

    Get PDF
    Faced with a historically unprecedented process of demographic ageing, many European societies implemented pension reforms in recent years to extend working lives. Although aimed at rebalancing public pension systems, this approach has the unintended side effect that it also extends the number of years in which working carers have to juggle the conflicting demands of employment and caregiving. This not only impinges on working carers’ well-being and ability to continue providing care but also affects European enterprises’ capacity to generate growth which increasingly relies on ageing workforces. The focus of this paper will thus be a cross-national comparison of individual reconciliation strategies and workplace-related company policies aimed at enabling working carers to reconcile both conflicting roles in four different European welfare states: Germany, Italy, Poland, and the United Kingdom

    Knowledge translation on dementia: a cluster randomized trial to compare a blended learning approach with a "classical" advanced training in GP quality circles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thus far important findings regarding the dementia syndrome have been implemented into patients' medical care only inadequately. A professional training accounting for both, general practitioners' (GP) needs and learning preferences as well as care-relevant aspects could be a major step towards improving medical care. In the WIDA-study, entitled "Knowledge translation on dementia in general practice" two different training concepts are developed, implemented and evaluated. Both concepts are building on an evidence-based, GP-related dementia guideline and communicate the guideline's essential insights.</p> <p>Methods/Design</p> <p>Both development and implementation emphasize a procedure that is well-accepted in practice and, thus, can achieve a high degree of external validity. This is particularly guaranteed through the preparation of training material and the fact that general practitioners' quality circles (QC) are addressed. The evaluation of the two training concepts is carried out by comparing two groups of GPs to which several quality circles have been randomly assigned. The primary outcome is the GPs' knowledge gain. Secondary outcomes are designed to indicate the training's potential effects on the GPs' practical actions. In the first training concept (study arm A) GPs participate in a structured case discussion prepared for by internet-based learning material ("blended-learning" approach). The second training concept (study arm B) relies on frontal medical training in the form of a slide presentation and follow-up discussion ("classical" approach).</p> <p>Discussion</p> <p>This paper presents the outline of a cluster-randomized trial which has been peer reviewed and support by a national funding organization – Federal Ministry of Education and Research (BMBF) – and is approved by an ethics commission. The data collection has started in August 2006 and the results will be published independently of the study's outcome.</p> <p>Trial Registration</p> <p>Current Controlled Trials [ISRCTN36550981]</p

    Climate Change in the Baltic Sea Region: A Summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in climate of the Baltic Sea region is summarized and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focusses on the atmosphere, land, cryosphere, ocean, sediments and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in paleo-, historical and future regional climate research, we find that the main conclusions from earlier assessments remain still valid. However, new long-term, homogenous observational records, e.g. for Scandinavian glacier inventories, sea-level driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution and new scenario simulations with improved models, e.g. for glaciers, lake ice and marine food web, have become available. In many cases, uncertainties can now be better estimated than before, because more models can be included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth System have been studied and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication and climate change. New data sets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal time scales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first paleoclimate simulations regionalized for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA) and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics is dominated by tides, the Baltic Sea is characterized by brackish water, a perennial vertical stratification in the southern sub-basins and a seasonal sea ice cover in the northern sub-basins</p

    Climate change in the Baltic Sea region: a summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins
    • …
    corecore