121 research outputs found

    Comparative Evaluation of Cytokines, T-Cell Apoptosis, and Costimulatory Molecule Expression in Tuberculous and Nontuberculous Pleurisy

    Get PDF
    In this study, we compared several immune parameters in tuberculosis (TB) and nontuberculosis (NTB) pleurisy to gain an understanding of the mechanism behind enhanced Th1 apoptosis that occurs at sites of active Myobacterium tuberculosis (M. tuberculosis) infection. An initial evaluation of the accumulated cytokines in pleural fluid (PF) demonstrated that both TB and NTB pleurisy were associated with proinflammatory cytokines, while only TB pleurisy had augmented expression of interferon (IFN)-Ξ³ and soluble Fas ligand (sFASL). Despite enhanced expression of the apoptosis-inducing molecule in TB pleurisy, T cells derived from both types of pleurisy exhibited significant apoptosis. In both groups, T-cell apoptosis correlated with low expression of CD80 on PF-derived macrophages and elevated accumulation of TGF-b in the PF. A causative correlation between TGF-b and low CD80 expression in the two groups was established by in vitro studies demonstrating TGF-b inhibition of CD80 upregulation in a macrophage cell line. Together, the findings allude to the possibility that activation in the absence of appropriate CD80 costimulation is the mechanism that leads to T-cell apoptosis at sites of active M. tuberculosis infection. Furthermore, the findings also indicate that T-cell apoptosis is perhaps a host regulatory mechanism to limit inflammation, rather than a pathogen-induced immune deviation

    Tuberculous Granuloma Formation Is Enhanced by a Mycobacterium Virulence Determinant

    Get PDF
    Granulomas are organized host immune structures composed of tightly interposed macrophages and other cells that form in response to a variety of persistent stimuli, both infectious and noninfectious. The tuberculous granuloma is essential for host containment of mycobacterial infection, although it does not always eradicate it. Therefore, it is considered a host-beneficial, if incompletely efficacious, immune response. The Mycobacterium RD1 locus encodes a specialized secretion system that promotes mycobacterial virulence by an unknown mechanism. Using transparent zebrafish embryos to monitor the infection process in real time, we found that RD1-deficient bacteria fail to elicit efficient granuloma formation despite their ability to grow inside of infected macrophages. We showed that macrophages infected with virulent mycobacteria produce an RD1-dependent signal that directs macrophages to aggregate into granulomas. This Mycobacterium-induced macrophage aggregation in turn is tightly linked to intercellular bacterial dissemination and increased bacterial numbers. Thus, mycobacteria co-opt host granulomas for their virulence

    Protection from Lethal Gram-Positive Infection by Macrophage Scavenger Receptor–Dependent Phagocytosis

    Get PDF
    Infections with gram-positive bacteria are a major cause of morbidity and mortality in humans. Opsonin-dependent phagocytosis plays a major role in protection against and recovery from gram-positive infections. Inborn and acquired defects in opsonin generation and/or recognition by phagocytes are associated with an increased susceptibility to bacterial infections. In contrast, the physiological significance of opsonin-independent phagocytosis is unknown. Type I and II class A scavenger receptors (SR-AI/II) recognize a variety of polyanions including bacterial cell wall products such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA), suggesting a role for SR-AI/II in innate immunity to bacterial infections. Here, we show that SR-AI/II–deficient mice (MSR-Aβˆ’/βˆ’) are more susceptible to intraperitoneal infection with a prototypic gram-positive pathogen, Staphylococcus aureus, than MSR-A+/+ control mice. MSR-Aβˆ’/βˆ’ mice display an impaired ability to clear bacteria from the site of infection despite normal killing of S. aureus by neutrophils and die as a result of disseminated infection. Opsonin-independent phagocytosis of gram-positive bacteria by MSR-Aβˆ’/βˆ’ macrophages is significantly decreased although their phagocytic machinery is intact. Peritoneal macrophages from control mice phagocytose a variety of gram-positive bacteria in an SR-AI/II–dependent manner. Our findings demonstrate that SR-AI/II mediate opsonin-independent phagocytosis of gram-positive bacteria, and provide the first evidence that opsonin-independent phagocytosis plays a critical role in host defense against bacterial infections in vivo

    Interactions between NaΓ―ve and Infected Macrophages Reduce Mycobacterium tuberculosis Viability

    Get PDF
    A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naΓ―ve macrophages produced an antimicrobial effect, but only if naΓ―ve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naΓ―ve macrophages. The antimicrobial effect of naΓ―ve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naΓ―ve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naΓ―ve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis

    Factors associated with pastoral community knowledge and occurrence of mycobacterial infections in human-animal interface areas of Nakasongola and Mubende districts, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens whose role in human and animal disease is increasingly being recognized. Major concerns are their role as opportunistic pathogens in HIV/AIDS infections. The role of open natural water sources as source and livestock/wildlife as reservoirs of infections to man are well documented. This presents a health challenge to the pastoral systems in Africa that rely mostly on open natural water sources to meet livestock and human needs. Recent study in the pastoral areas of Uganda showed infections with same genotypes of NTM in pastoralists and their livestock. The aim of this study was to determine the environmental, animal husbandry and socio-demographic factors associated with occurrence and the pastoral community knowledge of mycobacterial infections at the human-environment-livestock/wildlife interface (HELI) areas in pastoral ecosystems of Uganda.</p> <p>Methods</p> <p>Two hundred and fifty three (253) individuals were subjected to a questionnaire survey across the study districts of Nakasongola and Mubende. Data were analyzed using descriptive statistics and multivariable logistic regression analysis.</p> <p>Results</p> <p>Humans sharing of the water sources with wild animals from the forest compared to savannah ecosystem (OR = 3.3), the tribe of herding pastoral community (OR = 7.9), number of rooms present in household (3-5 vs. 1-2 rooms) (OR = 3.3) were the socio-demographic factors that influenced the level of knowledge on mycobacterial infections among the pastoral communities. Tribe (OR = 6.4), use of spring vs. stream water for domestic use (OR = 4.5), presence of sediments in household water receptacle (OR = 2.32), non separation of water containers for drinking and domestic use (OR = 2.46), sharing of drinking water sources with wild animals (OR = 2.1), duration of involvement of >5 yrs in cattle keeping (OR = 3.7) and distance of household to animal night shelters (>20 meters) (OR = 3.8) were significant socio-demographic factors associated with the risk of occurrence of mycobacterioses among the pastoral communities in Uganda.</p> <p>Conclusion</p> <p>The socio-demographic, environmental and household related factors influence the risk of occurrence as well as pastoralists' knowledge of mycobacterial infections in the pastoral households at the human-environment-livestock/wildlife pastoral interface areas of Uganda.</p

    Differential expression of mycobacterial antigen MPT64, apoptosis and inflammatory markers in multinucleated giant cells and epithelioid cells in granulomas caused by Mycobacterium tuberculosis

    Get PDF
    The development of granulomas is a major histopathological feature of tuberculosis. Very little information is available concerning the physiology and functions of different cell types in the tuberculous granulomas. The aim of this study was to compare the epithelioid cells (ECs) and multinucleated giant cells (MGCs) in the granulomas caused by Mycobacterium tuberculosis complex organisms. Lymph node biopsies from 30 cases of lymphadenitis were studied for expression of the secreted mycobacterial protein MPT64, caspase 3 as a marker of apoptosis, apoptosis-related proteins (Fas Ligand, Fas and Bax) and inflammatory cytokines (interleukin-10, transforming growth factor-Ξ² (TGF-Ξ²), tumour necrosis factor-Ξ± and interferon-Ξ³) by immunohistochemistry. MGCs more often contained M. tuberculosis secretory antigen MPT64 (p < 0.001) and expressed more TGF-Ξ² (p = 0.004) than ECs. The total number of apoptotic MGCs was higher than the number of apoptotic ECs (p = 0.04). Interestingly, there was a significant negative correlation between apoptosis and MPT64 expression in MGCs (r =β€‰βˆ’0.569, p = 0.003), but not in ECs, implying that the heavy antigen load would lead to inhibition of apoptosis in these cells. When compared with ECs, higher percentage of MGCs expressed Fas Ligand and Fas (p < 0.004). The role of MGCs may thus be different from surrounding ECs and these cells by virtue of higher mycobacterial antigen load, more TGF-Ξ² and reduced apoptosis may contribute towards persistence of infection

    The non-pathogenic mycobacteria M. smegmatis and M. fortuitum induce rapid host cell apoptosis via a caspase-3 and TNF dependent pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV pandemic raised the potential for facultative-pathogenic mycobacterial species like, <it>Mycobacterium kansasii</it>, to cause disseminating disease in humans with immune deficiencies. In contrast, non-pathogenic mycobacterial species, like <it>M. smegmatis</it>, are not known to cause disseminating disease even in immunocompromised individuals. We hypothesized that this difference in phenotype could be explained by the strong induction of an innate immune response by the non-pathogenic mycobacterial species.</p> <p>Results</p> <p>A comparison of two rapid-growing, non-pathogenic species (<it>M. smegmatis </it>and <it>M. fortuitum</it>) with two facultative-pathogenic species (<it>M. kansasii </it>and <it>M. bovis </it>BCG) demonstrated that only the non-pathogenic bacteria induced strong apoptosis in human THP-1 cells and murine bone marrow-derived macrophages (BMDM) and dendritic cells (BMDD). The phospho-<it>myo</it>-inositol modification of lipoarabinomannan (PI-LAM) isolated from non-pathogenic species may be one of the cell wall components responsible for the pro-inflammatory activity of the whole bacteria. Indeed, PI-LAM induces high levels of apoptosis and IL-12 expression compared to the mannosyl modification of LAM isolated from facultative-pathogenic mycobacteria. The apoptosis induced by non-pathogenic <it>M. smegmatis </it>was dependent upon caspase-3 activation and TNF secretion. Consistently, BALB/c BMDM responded by secreting large amounts of TNF upon infection with non-pathogenic but not facultative-pathogenic mycobacteria. Interestingly, C57Bl/6 BMDM do not undergo apoptosis upon infection with non-pathogenic mycobacteria despite the fact that they still induce an increase in TNF secretion. This suggests that the host cell signaling pathways are different between these two mouse genotypes and that TNF is necessary but not sufficient to induce host cell apoptosis.</p> <p>Conclusion</p> <p>These results demonstrate a much stronger induction of the innate immune response by non-pathogenic versus facultative-pathogenic mycobacteria as measured by host cell apoptosis, IL-12 and TNF cytokine induction. These observations lend support to the hypothesis that the strong induction of the innate immune response is a major reason for the lack of pathogenicity in fast-growing mycobacteria.</p

    Mycobacterium indicus pranii Supernatant Induces Apoptotic Cell Death in Mouse Peritoneal Macrophages In Vitro

    Get PDF
    Mycobacterium indicus pranii (MIP), also known as Mw, is a saprophytic, non-pathogenic strain of Mycobacterium and is commercially available as a heat-killed vaccine for leprosy and recently tuberculosis (TB) as part of MDT. In this study we provide evidence that cell-free supernatant collected from original MIP suspension induces rapid and enhanced apoptosis in mouse peritoneal macrophages in vitro. It is demonstrated that the MIP cell-free supernatant induced apoptosis is mitochondria-mediated and caspase independent and involves mitochondrial translocation of Bax and subsequent release of AIF and cytochrome c from the mitochondria. Experiments with pharmacological inhibitors suggest a possible role of PKC in mitochondria-mediated apoptosis of macrophages

    Endoplasmic Reticulum Stress Pathway-Mediated Apoptosis in Macrophages Contributes to the Survival of Mycobacterium tuberculosis

    Get PDF
    BACKGROUND: Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that ER stress-induced apoptosis is associated with Mtb H37Rv-induced cell death of Raw264.7 murine macrophages. We have shown that Mtb H37Rv induced apoptosis are involved in activation of caspase-12, which resides on the cytoplasmic district of the ER. Mtb infection increase levels of other ER stress indicators in a time-dependent manner. Phosphorylation of eIF2Ξ± was decreased gradually after Mtb H37Rv infection signifying that Mtb H37Rv infection may affect eIF2Ξ± phosphorylation in an attempt to survive within macrophages. Interestingly, the survival of mycobacteria in macrophages was enhanced by silencing CHOP expression. In contrast, survival rate of mycobacteria was reduced by phosphorylation of the eIF2Ξ±. Futhermore, the levels of ROS, NO or CHOP expression were significantly increased by live Mtb H37Rv compared to heat-killed Mtb H37Rv indicating that live Mtb H37Rv could induce ER stress response. CONCLUSION/SIGNIFICANCE: These findings indicate that eIF2Ξ±/CHOP pathway may influence intracellular survival of Mtb H37Rv in macrophages and only live Mtb H37Rv can induce ER stress response. The data support the ER stress pathway plays an important role in the pathogenesis and persistence of mycobacteria
    • …
    corecore