124 research outputs found
OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object
We report the discovery of the minor planet 2013 SY, on an
exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au,
2013 SY's orbit has a semi-major axis of au, the largest
known for a high-perihelion trans-Neptunian object (TNO), well beyond those of
(90377) Sedna and 2012 VP. Yet, with an aphelion of au,
2013 SY's orbit is interior to the region influenced by Galactic tides.
Such TNOs are not thought to be produced in the current known planetary
architecture of the Solar System, and they have informed the recent debate on
the existence of a distant giant planet. Photometry from the
Canada-France-Hawaii Telescope, Gemini North and Subaru indicate 2013 SY
is km in diameter and moderately red in colour, similar to other
dynamically excited TNOs. Our dynamical simulations show that Neptune's weak
influence during 2013 SY's perihelia encounters drives diffusion in its
semi-major axis of hundreds of astronomical units over 4 Gyr. The overall
symmetry of random walks in semi-major axis allow diffusion to populate 2013
SY's orbital parameter space from the 1000-2000 au inner fringe of the
Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45
to 49 au and semi-major axes beyond 250 au, providing a formation mechanism
that implies an extended population, gently cycling into and returning from the
inner fringe of the Oort cloud.Comment: First reviewer report comments incorporated. Comments welcom
Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes
We present a new scheme for determining the shape of the size distribution,
and its evolution, for collisional cascades of planetesimals undergoing
destructive collisions and loss processes like Poynting-Robertson drag. The
scheme treats the steady state portion of the cascade by equating mass loss and
gain in each size bin; the smallest particles are expected to reach steady
state on their collision timescale, while larger particles retain their
primordial distribution. For collision-dominated disks, steady state means that
mass loss rates in logarithmic size bins are independent of size. This
prescription reproduces the expected two phase size distribution, with ripples
above the blow-out size, and above the transition to gravity-dominated
planetesimal strength. The scheme also reproduces the expected evolution of
disk mass, and of dust mass, but is computationally much faster than evolving
distributions forward in time. For low-mass disks, P-R drag causes a turnover
at small sizes to a size distribution that is set by the redistribution
function (the mass distribution of fragments produced in collisions). Thus
information about the redistribution function may be recovered by measuring the
size distribution of particles undergoing loss by P-R drag, such as that traced
by particles accreted onto Earth. Although cross-sectional area drops with
1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining
the importance of understanding which particle sizes contribute to an
observation when considering how disk detectability evolves. Other loss
processes are readily incorporated; we also discuss generalised power law loss
rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical
Astronomy (special issue on EXOPLANETS
Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk
The association between anthropometric indices and the risk of breast cancer was analyzed using pooled data from seven prospective cohort studies. Together, these cohorts comprise 337,819 women and 4,385 incident invasive breast cancer cases. In multivariate analyses controlling for reproductive, dietary, and other risk factors, the pooled relative risk (RR) of breast cancer per height increment of 5 cm was 1.02 (95% confidence interval (Cl): 0.96, 1.10) in premenopausal women and 1.07 (95% Cl: 1.03, 1.12) in postmenopausal women. Body mass index (BMI) showed significant inverse and positive associations with breast cancer among pre- and postmenopausal women, respectively; these associations were nonlinear. Compared with premenopausal women with a BMI of less than 21 kg/m2, women with a BMI exceeding 31 kg/m2 had an RR of 0.54 (95% Cl: 0.34, 0.85). In postmenopausal women, the RRs did not increase further when BMI exceeded 28 kg/m2; the RR for these women was 1.26 (95% Cl: 1.09, 1.46). The authors found little evidence for interaction with other breast cancer risk factors. Their data indicate that height is an independent risk factor for postmenopausal breast cancer; in premenopausal women, this relation is less clear. The association between BMI and breast cancer varies by menopausal status. Weight control may reduce the risk among postmenopausal women
Dietary fat and risk of lung cancer in a pooled analysis of prospective studies
Harvard School of Public Health, Department of Nutrition, Boston, Massachusetts 02115, USA. Lung cancer rates are highest in countries with the greatest fat intakes. In several case-control studies, positive associations have been observed between lung cancer and intakes of total and saturated fat, particularly among nonsmokers. We analyzed the association between fat and cholesterol intakes and lung cancer risk in eight prospective cohort studies that met predefined criteria. Among the 280,419 female and 149,862 male participants who were followed for up to 6-16 years, 3,188 lung cancer cases were documented. Using the Cox proportional hazards model, we calculated study-specific relative risks that were adjusted for smoking history and other potential risk factors. Pooled relative risks were computed using a random effects model. Fat intake was not associated with lung cancer risk. For an increment of 5% of energy from fat, the pooled multivariate relative risks were 1.01 [95% confidence interval (CI), 0.98-1.05] for total, 1.03 (95% CI, 0.96-1.11) for saturated, 1.01 (95% CI, 0.93-1.10) for monounsaturated, and 0.99 (95% CI, 0.90-1.10) for polyunsaturated fat. No associations were observed between intakes of total or specific types of fat and lung cancer risk among never, past, or current smokers. Dietary cholesterol was not associated with lung cancer incidence [for a 100-mg/day increment, the pooled multivariate relative risk was 1.01 (95% CI, 0.97-1.05)]. There was no statistically significant heterogeneity among studies or by sex. These data do not support an important relation between fat or cholesterol intakes and lung cancer risk. The means to prevent this important disease remains avoidance of smoking
Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies.
Context: Some epidemiologic studies suggest that elevated fruit and vegetable consumption is associated with a reduced risk of breast cancer. However, most have been case-control studies in which recall and selection bias may influence the results. Additionally, publication bias may have influenced the literature on associations for specific fruit and vegetable subgroups. Objective: To examine the association between breast cancer and total and specific fruit and vegetable group intakes using standardized exposure definitions. Data Sources/Study Selection: Eight prospective studies that had at least 200 incident breast cancer cases, assessed usual dietary intake, and completed a validation study of the diet assessment method or a closely related instrument were included in these analyses. Data Extraction: Using the primary data from each of the studies, we calculated study-specific relative risks (RRs) that were combined using a random-effects model. Data Synthesis: The studies included 7377 incident invasive breast cancer cases occurring among 351825 women whose diet was analyzed at baseline. For comparisons of the highest vs lowest quartiles of intake, weak, nonsignificant associations were observed for total fruits (pooled multivariate RR, 0.93; 95% confidence interval [CI], 0.86-1.00; P for trend = .08), total vegetables (RR, 0.96; 95% CI, 0.89-1.04; P for trend = .54), and total fruits and vegetables (RR, 0.93; 95% CI, 0.86-1.00; P for trend = .12). No additional benefit was apparent in comparisons of the highest and lowest deciles of intake. No associations were observed for green leafy vegetables, 8 botanical groups, and 17 specific fruits and vegetables. Conclusion: These results suggest that fruit and vegetable consumption during adulthood is not significantly associated with reduced breast cancer risk
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
- …