278 research outputs found

    The effect of cross-boundary management on the trajectory to commonness in biological invasions

    Get PDF
    The number of alien species introduced and undergoing range expansion in novel environments is steadily increasing, with important consequences for native ecosystems. The efficacy of management planning and decision making to limit such invasions can be improved by understanding how interventions will impact the population dynamics of recently introduced species. To do so, here we expand on a typological framework that enables the classification of populations over time into 10 categories of commonness, and apply it to a spatially discrete metapopulation with heterogeneous abundance across spatial units (patches). We use this framework to assess the effect of cross-boundary management on the capacity of a metapopulation with different demographic and dispersal characteristics, including time lags in population growth, to become common. We demonstrate this framework by simulating a simple theoretical metapopulation model capable of exploring a range of environments, species characteristics, and management actions. Management can vary in the efficacy of propagule interception between patches, and in the synchronisation of the implementation of these measures across patches (i.e. if management is implemented simultaneously across patches). Simulations show that poor interception efficacy that only modestly reduces the number of propagules entering a given spatial unit cannot be compensated for by strong management synchronisation between spatial units. Management synchronisation will nonetheless result in a reduction in rates of spread once a critical threshold of interception efficacy has been met. Finally, time lags in population growth that may result in delayed spread are an important aspect to be considered in management as they can amplify the efficacy of management. Our results demonstrate how a typological framework of categories of commonness can be used to provide practical insights for the management of biological invasions

    What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise

    Get PDF
    Biological invasions can cause substantial economic losses and expenses for management, as well as harm biodiversity, ecosystem services and human well-being. A comprehensive assessment of the economic costs of invasions is a challenging but essential prerequisite for efficient and sustainable management of invasive alien species. Indeed, these costs were shown to be inherently heterogeneous and complex to determine, and substantial knowledge gaps prevent a full understanding of their nature and distribution. Hence, the development of a still-missing global, standard framework for assessing and deciphering invasion costs is essential to identify effective management approaches and optimise legislation. The recent advent of the InvaCost database – the first comprehensive and harmonised compilation of the economic costs associated with biological invasions worldwide – offers unique opportunities to investigate these complex and diverse costs at different scales. Insights provided by such a dataset are likely to be greatest when a diverse range of experience and expertise are combined. For this purpose, an international and multidisciplinary workshop was held from 12th to 15th November 2019 near Paris (France) to launch several project papers based on the data available in InvaCost. Here, we highlight how the innovative research arising from this workshop offers a major step forward in invasion science. We collectively identified five core research opportunities that InvaCost can help to address: (i) decipher how existing costs of invasions are actually distributed in human society; (ii) bridge taxonomic and geographic gaps identified in the costs currently estimated; (iii) harmonise terminology and reporting of costs through a consensual and interdisciplinary framework; (iv) develop innovative methodological approaches to deal with cost estimations and assessments; and (v) provide cost-based information and tools for applied management of invasions. Moreover, we attribute part of the success of the workshop to its consideration of diversity, equity and societal engagement, which increased research efficiency, creativity and productivity. This workshop provides a strong foundation for substantially advancing our knowledge of invasion impacts, fosters the establishment of a dynamic collaborative network on the topic of invasion economics, and highlights new key features for future scientific meetings.Fil: Diagne, Christophe. Universite Paris-Saclay;Fil: Catford, Jane A.. King's College London; Reino UnidoFil: Essl, Franz. Universidad de Viena; AustriaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Courchamp, Franck. Universite Paris-Saclay

    Invasions of isotopes and of neobiota

    Get PDF
    We report on invasions with low diffusivity: one in materials science and one in ecology. What is interesting in materials science is to describe diffusivities in order to model technological important materials. In ecology on the other hand predictions into the future appear the most challenging issue

    Patterns and drivers of the global diversity of non‐native macrofungi

    Get PDF
    Aim: To uncover the biogeography of non-native macrofungal diversity worldwide, by analysing patterns and drivers of (1) regional variation in species richness, (2) compositional similarity between regional species assemblages and (3) the spatiotemporal trends of first records. Location: Global. Methods: We used a database providing 1608 distribution records of 554 non-native macrofungal species in 167 national and sub-national regions worldwide. Regression models accounting for regional levels of recording capacity were used to relate spatial variation of non-native macrofungal richness and of regional compositional similarities to variables representing geographical, socio-economic and biophysical characteristics of regions. Temporal trends of first records were assessed at the global and continental scales and for distinct ecofunctional groups. Results: Regions reporting higher diversity of non-native species occur mainly in Europe, the Americas and Oceania. Regression models showed that regions with greater gross domestic product per capita, areal extent and in the Southern Hemisphere have higher non-native species richness, while regions with similar mean temperatures and latitudinal position share higher compositional similarities. Numbers of first records of non-native macrofungi have grown quasi-exponentially between 1753 and 2018, reflecting not only improved recording capacities but also likely an increasing number of introductions.Main Conclusions: We find that many regions of the world already harbour a high diversity of non-native macrofungi, with economic, climatic and introduction pathwayrelated factors explaining a relevant portion of the geographical patterns formed by these taxa. Given that socio-economic activity has increased strongly in recent decades, the global anthropogenic redistribution of macrofungi is likely to intensify further in the near future.info:eu-repo/semantics/publishedVersio

    Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)

    Get PDF
    Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users

    A database of the global distribution of alien macrofungi

    Get PDF
    Human activities are allowing the ever-increasing dispersal of taxa to beyond their native ranges. Understanding the patterns and implications of these distributional changes requires comprehensive information on the geography of introduced species. Current knowledge about the alien distribution of macrofungi is limited taxonomically and temporally, which severely hinders the study of human-mediated distribution changes for this taxonomic group.info:eu-repo/semantics/publishedVersio

    Boom‐bust dynamics in biological invasions: towards an improved application of the concept

    Get PDF
    Boom‐bust dynamics – the rise of a population to outbreak levels, followed by a dramatic decline – have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom‐bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom‐bust dynamics and provide specific suggestions for improving the application of the boom‐bust concept. Boom‐bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom‐bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom‐bust dynamics. Understanding the frequency and importance of boom‐bust dynamics requires empirical studies of large, representative, long‐term data sets that use clear definitions of boom‐bust, appropriate analytical methods, and careful interpretations

    are ecologically harmful alien species associated with particular introduction pathways?

    Get PDF
    Prioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe- aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity
    • 

    corecore