53 research outputs found

    Mécanismes moléculaires de l'agrégation de l'insuline induite par la surface des matériaux

    Get PDF
    L'agrégation protéique induite par la surface des matériaux est un phénomène important dans la stabilité des protéines thérapeutiques. En utilisant l'insuline humaine, nous avons étudié les phénomènes agrégation en présence de surfaces neutres hydrophobes ou hydrophiles et avons montré que la nucléation a lieu sur les surfaces hydrophobes que l'on soit à pH 2.5 ou 7.3. Nous avons montré que l'énergie d'activation de la nucléation est abaissée sur surface hydrophobe. De plus, il apparait que l'agitation de la solution a des effets antagonistes. En particulier, les forces hydrodynamiques de cisaillement détachent de la surface les fibres. Par Résonance Plasmonique de Surface, spectroscopie infrarouge et microscopie à fluorescence, nous avons pu définir les étapes moléculaires ayant lieu à l'interface matériaux hydrophobe/solution. L'insuline s'adsorbe tout d'abord rapidement sur la surface, puis s'accumule lentement parallèlement à une transition de la structure a initiale vers une structure b, aboutissant à la formation de fibres amyloïdes. Par la suite, nous avons étudié le mécanisme d'action d'un peptide connu pour accélérer l'agrégation de l'insuline (LVEALYL). Ce peptide s'adsorbe de façon stable sur la surface hydrophobe en structure b et facilite l'accumulation d'insuline. De plus, il apparait que la séquence du peptide n'est pas essentielle à son action car différents peptides adoptant une structure b sur la surface sont également capables d'induire l'agrégation de l'insuline. La présence de prolines aboli cette action. Ces résultats apportent d'importantes informations sur les mécanismes moléculaires d'auto-association de l'insuline. L'hydrophobicité du matériau facilite le dépliement de l'insuline adsorbée, aboutissant à l'exposition du segment LVEALYL. Cette séquence facilite la propagation du changement de conformation vers les molécules nouvellement adsorbées. Agir contre ce phénomène pourrait permettre de stabiliser les solutions protéiques.Material surface-induced protein aggregation is important for the stability of therapeutic proteins. Using human insulin, we first study its amyloidal aggregation on neutral hydrophobic or hydrophilic surfaces and show that nucleation takes place on the hydrophobic surfaces at both pH 2.5 and 7.3. We show that the activation energy for nucleation is lower on hydrophobic surfaces than in solution. We observed that agitating the solution has several antagonistic effects. In particular, the hydrodynamic shear stress detaches surface-borne fibrils. Using Surface Plasmon Resonance imaging, infrared spectroscopy and fluorescence microscopy we then define the sequence of molecular events that happen at the interface between hydrophobic materials and fluid phase. Insulin first adsorbs rapidly on the surface and then continues to accumulate, in parallel with an alpha-to beta-structural transition leading to amyloid fibril formation. Hereafter, we study the mechanism of action of a small peptide known to accelerate insulin aggregation (LVEALYL). This peptide stably adsorbs in b-conformation on the surface and helps accumulating insulin on the surface. Moreover, it appears that its sequence is not essential for its effectiveness, since several peptides, having a b-sheet structure on the surface, induce insulin aggregation. The presence of prolines abolishes its pro-aggregative activity. These results shed light on the molecular details of insulin self-association. The hydrophobic nature of material surfaces facilitates the unfolding of adsorbed insulin, resulting in the exposure of the LVEALYL peptide segment. This peptide promotes the propagation of conformational changes among incoming proteins. Counteracting this propagation could help stabilizing protein solutions.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Microscale adhesion patterns for the precise localization of amoeba

    Full text link
    In order to get a better understanding of amoeba-substrate interactions in the processes of cellular adhesion and directional movement, we engineered glass surfaces with defined local adhesion characteristics at a micrometric scale. Amoeba (Dictyostelium dicoideum) is capable to adhere to various surfaces independently of the presence of extracellular matrix proteins. This paper describes the strategy used to create selective adhesion motifs using an appropriate surface chemistry and shows the first results of locally confined amoeba adhesion. The approach is based on the natural ability of Dictyostelium to adhere to various types of surfaces (hydrophilic and hydrophobic) and on its inability to spread on inert surfaces, such as the block copolymer of polyethylene glycol and polypropylene oxide, named Pluronic. We screened diverse alkylsilanes, such as methoxy, chloro and fluoro silanes for their capacity to anchor Pluronic efficiently on a glass surface. Our results demonstrate that hexylmethyldichlorosilane (HMDCS) was the most appropriate silane for the deposition of Pluronic. A complex dependence between the physicochemistry of the silanes and the polyethylene glycol block copolymer deposition was observed. Using this method, we succeed in scaling down the micro-fabrication of pluronic-based adhesion motifs to the amoebaComment: Microelectronic Engineering (2008) in pres

    Motilité sous flux hydrodynamique et étalement de Dictyostelium discoideum

    No full text
    DICTYOSTELIUM DISCOIDEUM EST UN ORGANISME UNICELLULAIRE SE NOURRISSANT PAR PHAGOCYTOSE DE MICROORGANISMES ET ENDOCYTOSE DE PHASE FLUIDE. ELLE EST CAPABLE DE MIGRATION SUR UN SUBSTRAT, PAR EMISSION DE PROTRUSIONS SUR LE FRONT CELLULAIRE AVANT, ET PAR RETRACTION DU FRONT ARRIERE. LA MOTILITE EST LIEE A L'ADHERENCE DES CELLULES SUR LE SUBSTRAT, SIEGE DE LA TRANSMISSION DES FORCES EXERCEES PAR LA CELLULE. SOUMISE A UNE FORCE DE CISAILLEMENT HYDRODYNAMIQUE, DICTYOSTELIUM SE DEPLACE DANS LE SENS DU FLUX. NOUS AVONS ETUDIE LES MECANISMES BIOCHIMIQUES MIS EN JEU EN REPONSE A LA FORCE OU A L'ETALEMENT. NOUS AVONS ANALYSER LE COMPORTEMENT DE CELLULES SAUVAGES ET DE MUTANTS D'INVALIDATION, A L'ECHELLE DE LA CELLULE ET DU BORD CELLULAIRE. NOUS MONTRONS PLUSIEURS RESULTATS. LE CALCIUM LIBRE EXTRACELLULAIRE AUGMENTE LA VITESSE DE MIGARTION DES CELLULES ET LEUR SENSIBILITE AUX FORCES. CECI EST DU A UNE AUGMENTATION DE LA DYNAMIQUE DES BORDS CELLULAIRES, LES PROTRUSIONS ETANT PLUS GRANDES ET LES RETRACTIONS PLUS EFFICACES. IL Y A DES OSCILLATIONS DES BORDS CELLULAIRES, AVEC DES PERIODES PROPRES DIFFERENTES A L'AVANT ET A L'ARRIERE DE LA CELLULE. CES PERIODES NE DEPENDENT NI DE LA CONCENTRATION NI DU TYPE CELLULAIRE. LE CALCIUM AUGMENTE LA CINETIQUE ET LA REGULARITE DE L'ETALEMENT, EN AGISSANT SUR LA POLYMERISATION D'ACTINE. L'ETALEMENT NE DEPEND QUE DE LA POLYMERISATION D'ACTINE ET DE L'EMISSION DE PROTRUSIONS, TANDIS QUE LES RETRACTIONS NE PEUVENT EXISTER SANS MYOSINE 2. ENFIN, LES PROTEINES G ET LES RECETEURS A L'IP3 SONT IMPLIQUES DANS LA SIGNALISATION CALCIQUE.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Etalement de Dictyostelium discoideum et rôle des protéines Phg2, PKD2 et TPC dans la motilité

    No full text
    L amibe Dictyostelium discoideum est un eucaryote unicellulaire capable de se déplacer et de se nourrir par phagocytose. Cet organisme est très utilisé pour décrypter les mécanismes moléculaires du chimiotactisme et de la motilité cellulaire. Les travaux de S.Fache au laboratoire ont notamment montré que la motilité de Dictyostelium est stimulée par une contrainte mécanique, et que la vitesse atteinte dépend du calcium extracellulaire. Dans ce travail, nous avons étudié l étalement de Dictyostelium sur un substrat, processus qui peut être apparenté à certaines étapes de la motilité cellulaire. Nous avons montré que l étalement de Dictyostelium est un processus quasi-linéaire et anisotrope. De plus, nous avons mis en évidence des variations périodiques de l aire gagnée par les cellules dont nous n avons pu identifier l origine moléculaire. Ces travaux sur l étalement cellulaire nous ont permis de caractériser le rôle de la protéine Phg2 dans la motilité cellulaire. Phg2 est une kinase connue pour être impliquée dans la phagocytose et la motilité. Nous avons établi que Phg2 contrôle la polarisation cellulaire via son domaine de liaison aux protéines de type Ras, et joue également un rôle dans la polymérisation locale de l actine via son domaine Enfin, nous avons inactivé deux gènes codant pour des canaux calciques chez Dictyostelium, et les études préliminaires menées semblent indiquer qu ils ne participent pas à la réponse calcique de la motilité induite par une contrainte.Dictyostelium discoideum is a unicellular eukaryote with abilites to crawl on surfaces and feed on bacteria. It is widely used as a model for chemotaxis and cell motility. In our laboratory, S.Fache showed that the motility of Dictyostelium is enhanced by shear stress, and that the maximal speed depends on extracellular calcium concentration. In this work, we have studied the spreading of Dictyostelium on a surface. This process is similar to the first step of cell motility. We have shown that Dictyostelium spreading is quasi-linear and anisotrope. Furthermore, we have discovered a periodic activity in the speed of gain and loss area during spreading. The molecular origin of this activity is unknown. These works on cellular spreading enable us to characterize the function of the protein Phg2 during cell motility. Phg2 is a kinase involved in phagocytosis and motility. We have established that Phg2 controls cell polarity through it s Ras Binding Domain. Phg2 also controls local actin polymerisation through it s kinase domain. Finally, we knocked out two genes coding for potential calcium channels in Dictyostelium.The studies we have led with the mutant cells suggest that they are not involved in the calcium response during shear stress induced cell motility.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Physical model for membrane protrusions during spreading.

    Get PDF
    International audienceDuring cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane-cytoskeleton complex, such as the membrane-cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane-cytoskeleton adherence

    Application de contraintes sur des systèmes complexes artificiels ou vivants (dégonflement de liposomes fonctionnalisés et réorganisation mécanosensible du cytosquelette de cellules dictyostelium)

    No full text
    Dans la première approche de ce travail, j'ai quantifié le dégonflement osmotique de liposomes remplis d'un gel d'agarose. La fabrication de tels systèmes reconstitués vise à permettre de mimer le comportement de cellules soumises aux mêmes contraintes. En particulier, j'ai observé que ces liposomes fonctionnalisés acquièrent des morphologies crénelées lors de leur dégonflement pour une concentration du gel comprise entre 0.07 et 0.18 % en masse. Ces formes originales ressemblent à celles d'échinocytes parfois prises par les globules rouges. Le gel est responsable de l'apparition de ces formes, ne modifie pas les cinétiques de dégonflement mais sa pression élastique arrête précocement le dégonflement comparativement aux liposomes aqueux, mettant en évidence un phénomène de rétention d'eau. Dans la deuxième approche, j'ai étudié l'effet de contraintes hydrodynamiques sur des amibes Dictyostelium adhérentes à un substrat et ai quantifié la réorganisation mécanosensible du cytosquelette de ces cellules vivantes. Pour obtenir les cinétiques de relocalisation de protéines majeures du cytosquelette en réponse aux forces d'un flux, j'ai marqué l'actine et la myosine-II avec des protéines fluorescentes et ai fabriqué une chambre à flux permettant de changer rapidement la direction du flux. Les cellules étudiées s'orientent contre les forces du flux et se réorientent contre en inversant leur polarité après une inversion du flux: d'abord l'actine dépolymérise puis des protrusions sont émises contre les nouvelles forces mécaniques, et 15 sec plus tard, l'arrière rétracte en utilisant la myo-II. La contractilité du système actine-myosine n'est pas nécessaire pour sentir les forces.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Cinétique de détachement de microorganismes modèles adsorbés sur des surfaces d'acier inoxydable (effet de la rugosité et de l'orientation cristallographique)

    No full text
    Les phénomènes de bioadhésion de microorganismes sur les aciers inoxydables son fréquents et peuvent entraîner des problèmes de santé publique tels que des infections toxicologiques. En partenariat avec Ugine-Alz, nous nous sommes intéressés, à l'aide d'une chambre à flux radial (Décavé et al. Biophysical Journal, 2002, 82, 2383-95), à l'étude quantitative des cinétiques de détachement de trois microorganismes après adhésion sur des surfaces d'acier inoxydable. Saccharomyces cerevisiae (levure), Escherichia coli (Gram-), et Staphylococcus epidermidis (Gram+). Les aciers inoxydables utilisés sont des échantillons polis miroir et polis attaqués avec des tailles de grain et des profondeurs d'attaque des joints de grain différentes. L'utilisation de ces différents états de surface ne modifie pas la valeur de la contrainte nécessaire pour détacher 50% des microorganismes (seuil de détachement). Par contre, la profondeur d'attaque des joints de grain et la taille de grain accélèrent la cinétique de détachement de S. cerevisiae et ralentissent celle d'E. coli. Enfin, une adhésion préférentielle a été mise en évidence, pour les trois microorganismes, sur les grains d'orientation cristallographique (Demilly et al., Colloids and Surfaces B, in press, 2006).GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
    corecore