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Abstract

Material surface-induced protein aggregation is important for the stability of therapeutic proteins.

Using human insulin, we first study its amyloidal aggregation on neutral hydrophobic or 

hydrophilic surfaces and show that nucleation takes place on the hydrophobic surfaces at both pH 

2.5 and 7.3. We show that the activation energy for nucleation is lower on hydrophobic surfaces 

than in solution. We observed that agitating the solution has several antagonistic effects. In 

particular, the hydrodynamic shear stress detaches surface-borne fibrils. Using Surface Plasmon 

Resonance imaging, infrared spectroscopy and fluorescence microscopy we then define the 

sequence of molecular events that happen at the interface between hydrophobic materials and 

fluid phase. Insulin first adsorbs rapidly on the surface and then continues to accumulate, in 

parallel with an -to -structural transition leading to amyloid fibril formation. Hereafter, we 

study the mechanism of action of a small peptide known to accelerate insulin aggregation

(LVEALYL). This peptide stably adsorbs -conformation on the surface and helps 

accumulating insulin on the surface. Moreover, it appears that its sequence is not essential for its 

effectiveness, since several peptides, having a -sheet structure on the surface, induce insulin 

aggregation. The presence of prolines abolishes its pro-aggregative activity. These results shed 

light on the molecular details of insulin self-association. The hydrophobic nature of material 

surfaces facilitates the unfolding of adsorbed insulin, resulting in the exposure of the LVEALYL 

peptide segment. This peptide promotes the propagation of conformational changes among 

incoming proteins. Counteracting this propagation could help stabilizing protein solutions.

Résumé

L’agrégation protéique induite par la surface des matériaux est un phénomène important dans la 

stabilité des protéines thérapeutiques. En utilisant l’insuline humaine, nous avons étudié les 

phénomènes agrégation en présence de surfaces neutres hydrophobes ou hydrophiles et avons 

montré que la nucléation a lieu sur les surfaces hydrophobes que l’on soit à pH 2.5 ou 7.3. Nous 

avons montré que l’énergie d’activation de la nucléation est abaissée sur surface hydrophobe.  De 

plus, il apparait que l’agitation de la solution a des effets antagonistes. En particulier, les forces 

hydrodynamiques de cisaillement détachent de la surface les fibres. Par Résonance Plasmonique 

de Surface, spectroscopie infrarouge et microscopie à fluorescence, nous avons pu définir les 

étapes moléculaires ayant lieu à l’interface matériaux hydrophobe/solution. L’insuline s’adsorbe 

tout d’abord rapidement sur la surface, puis s’accumule lentement parallèlement à une transition 

de la à la formation de fibres amyloïdes. Par la 

suite, nous avons étudié le mécanisme d’action d’un peptide connu pour accélérer l’agrégation de 

l’insuline (LVEALYL). Ce peptide s’adsorbe de façon stable sur la surface hydrophobe en 

’accumulation d’insuline. De plus, il apparait que la séquence du peptide 

n’est pas essentielle à son action car différents peptides adoptant une structure 

sont également capables d’induire l’agrégation de l’insuline. La présence de prolines aboli cette 

action. Ces résultats apportent d’importantes informations sur les mécanismes moléculaires 

d’auto-association de l’insuline. L’hydrophobicité du matériau facilite le dépliement de l’insuline 

adsorbée, aboutissant à l’exposition du segment LVEALYL. Cette séquence facilite la 

propagation du changement de conformation vers les molécules nouvellement adsorbées. Agir 

contre ce phénomène pourrait permettre de stabiliser les solutions protéiques.
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1.1. Protein conformations and aggregation 

 1.1.1. Generality on protein structure and protein solutions 

Proteins are heteropolymers of amino-acids connected by amide bounds. Their 

characteristic size varies from a few nanometers to a few micrometers. 20 different amino-acids 

are present in proteins, each one having different physico-chemical properties. The amino-acid 

sequence, also called primary structure, is defined by the DNA sequence of the gene coding for 

that protein. Since amino-acid side chains have different size, are polar or apolar, charged or 

neutral, the interactions of the amino-acid polypeptide chain(s) with their environment 
1
 (solvent, 

salts, surfaces, other proteins and small molecules) defines protein 3D structure. Three structural 

levels are commonly described. Secondary structures are stabilized by interactions between main 

chain atoms (C=O and N–H) and consist of α-helices, parallel and anti-parallel β-sheets, extended 

helices, β-hairpins and disordered segments. Tertiary structures also involve the interactions 

between amino-acid side chains that results in domain formation. The formation and assembly of 

protein domains, called folding, is supervised in vivo by other proteins called chaperones. About 

1000 different protein domains are known, with different biological functions. When correctly 

folded, proteins are in their biologically active conformation, also called native conformation, and 

can act in cell processes in vivo, depending on their biological function (enzymes, cell signaling 

components, cytoskeleton, transcription factors…). Nowadays, artificial proteins, called 

recombinant proteins, are also engineered, produced and purified to be used as therapeutical 

drugs. 

Protein solutions consist of colloidal suspensions stabilized by the electrostatic repulsive 

forces between the proteins. Proteins often present several energetically favorable 3 dimensional 

structures or conformations, depending on the environmental conditions. Consequently, changes 

in pH, ionic strength or temperature, or protein/protein or protein/surfaces interactions can lead to 

the destabilization of native protein metastable structures 
2
 and to the formation of other protein 

structures 
3
. It must be noticed that the order of magnitude of folding energy in a protein is 10 

kcal per mole
 
of amino-acid, while the order of magnitude of conformational transition activation 

energy is ~100 times less, from 10 to 20 kcal per mole of protein. Consequently, conformational 

changes induce only small variations in protein energy. Nevertheless, it may reduce the protein 

biological activity. Charged and neutral groups positions at the surface of the protein may also be 
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modified, which can reduce the repulsive forces between the proteins, leading to flocculation. 

Many different flocculation processes have been observed, with formation of large protein 

aggregates that precipitate. Depending on the self-assembly process, proteins can form low 

structured amorphous aggregates, or highly ordered structures such as fibrils or crystals 
4
. 

1.1.2. Importance of proteins stability in medical applications 

In pharmaceutical industry, the use of proteins as drugs has been widely extended since 

the US Food and Drug Administration (FDA) approval in 1982 of the first therapeutic 

recombinant insulin. This was made possible by the very high purity (> 99.9 %) obtained with the 

purification techniques 
5
. The protein produced can be either identical to their natural counterpart, 

or modified to enhance their activity or stability, and several protein domains can be fused 

together to obtain more complex functions in a recombinant protein. Currently, many proteins are 

already used to treat a large number of diseases, from cancers to diabetes or growth hormone 

deficiency, and many other proteins are still currently in preclinical or clinical development. 

Consequently, protein stability becomes a very important issue, in addition to its observed 

biological effect; a protein which cannot be stabilized correctly over a period of 18 to 24 months, 

will not be authorized for medical use 
6,7

. 

Two major sources of protein instability and flocculation are: (i) chemical degradation 

like asparagines oxidation and glutamine deamidation
8
, and (ii) unfolding leading to protein self-

association. These processes can lead to the irreversible formation of non functional high 

molecular weight species of self-assembled proteins. Proteins with very different amino-acid 

sequences can form protein aggregates stabilized by similar structures, suggesting that a generic 

mechanism is governing the process 
9–11

. Proteins can aggregate in ordered or disordered high 

molecular mass structures but little is known about the conditions that favor formation of 

aggregates at a given order level compare to another order level. Nevertheless, aggregates are 

often rich in β-sheet structures and protein fibril is a typical protein aggregate 
12,13

.  

1.1.3. Protein aggregation thermodynamics and kinetics 

Assuming that no chemical degradation occurs, the conformational stability of a protein in 

solution can be defined as the free energy change at a given temperature, pressure and buffer 

composition, for the equilibrium between the native protein state (N) and the denaturated or 



 

 - 9 - 

unfolded protein state (U), with the possible existence of intermediate conformed proteins states 

(I). The U ↔ I ↔ N reactions, involving the structuration/destructuration of the protein by intra-

protein interactions are called folding/unfolding reactions 
14–16

. Protein interactions involve 

specific electrostatic interactions, H-bounding and van-der-Vaals forces or originate from the 

hydrophobic effect. Moreover, N, U or I proteins states can be involved in protein/protein 

interactions. The same kind of interactions can lead to the formation of aggregates (A) of self-

associated proteins. Consequently, the formation of proteins in an aggregated state is considered 

as a process that competes with the natural folding reaction 
17

. These aggregates can even 

precipitate when their size became large enough for gravity force to compensate Brownian 

motion. These aggregates can be low-order and form amorphous structures or can be highly 

structured and form fibrils or crystals 
4
, depending on the aggregation pathway in action. 

Kinetically speaking, protein aggregations generally proceeds in 3 steps (see Figure 1.1): (i) a 

slow nucleation phase (lag phase), where sites of nucleation slowly form, (ii) the growth phase 

where aggregates rapidly form and (iii) a steady state when aggregated proteins and monomers 

are at equilibrium 
18,19

.  

Figure 1.1: Typical kinetics of insulin aggregation: Lag phase, growth phase and plateau (steady state). 
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inside the proteins. It is known that individual proteins can undergo conformational 

rearrangement, also called unfolding, leading to non-favorable hydrophobic domains exposure to 

solvent. Aggregation therefore implies collective unfolded proteins interactions and stabilizations 

mostly through exposed hydrophobic domains interactions.  

Even before the completion of their synthesis, proteins start to fold. As unfolded proteins 

expose their hydrophobic segments to solvent, these segments rapidly minimize the free energy 

by changing their conformation and removing hydrophobic parts from water contact. 

Consequently, the first folding event is the burying of hydrophobic lateral chains. This partially 

folded state is called the “molten globule”, which is characterized by a backbone resembling the 

completely folded protein, but lacking the extensive specific side-chain packing interactions of 

the native structure. This state corresponds to higher energy level than the native state but lower 

energy than the completely unfolded state. Since the protein structure is flexible and continuously 

fluctuating around an average conformation, soluble protein can spontaneously expose 

hydrophobic segment to solvent 
20

. This is revealed by the binding of the hydrophobic 

fluorophore ANS, which is increased dramatically near the unfolding temperature. If the protein 

is near a hydrophobic surface, this segment can minimize its free energy by making a contact 

with this dehydrated surface. This protein adsorption on hydrophobic surfaces thus possibly leads 

to partial unfolding and exposition of hydrophobic segments. In addition, adsorption increases the 

protein local concentration. The exposed hydrophobic protein domains can then interact together, 

forming initial protein aggregates. 

1.1.4. Physico-chemical parameters affecting protein aggregation kinetics 

In different studies, protein aggregation can be accelerated or slowed down by different 

physic-chemical factors. The most important are ionic strength, temperature and pH variations, 

that can induce changes in protein stability 
21

.  

When the temperature is raised, non covalent bounds in the proteins, particularly 

hydrogen bounds, are weakened. This affects the interactions that are necessary for the 

stabilization of tertiary structure and proteins become more flexible. As heating continues, 

hydrogen bounds will begin to break, leading to partial loss of secondary structure of the protein 

and the possible exposure of hydrophobic residues. Consequently, thermally induced protein 
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unfolding often leads to fast aggregation due to intermolecular interactions of proteins 

hydrophobic residues. Since the native soluble protein conformation corresponds to a local 

energy minimum and the aggregate form to a more stable conformation, the protein aggregation 

process is spontaneous and is governed by the activation energy, in respect to Arrhenius law. A 

temperature increase thus leads to accelerated aggregation. It follows that temperature is the most 

commonly used parameter to control protein aggregation. The temperature effect on protein 

conformation and stability can be determined using microcalorimetry. 

A second common parameter that affects protein aggregation is the pH. Many amino acids 

charges are determined by the solution pH. Consequently, pH determines the charge distribution 

in the protein, which affects intramolecular interactions and its structural stability. For instance, 

in areas of large charge density of the same sign, electrostatic repulsion can leads to partial 

unfolding. Therefore, if the protein structure depends on electrostatic charges interactions, an 

inappropriate pH can destabilize protein structure. The solution pH also determine the net global 

charge of the protein, which highly influence protein/protein electrostatic repulsion and so the 

intermolecular interactions. Identical charges repel each other in solution, but if pH is not far 

from the isoelectric pH (pI), proteins will have a zero global charge, which facilitates protein 

association, hence aggregation.  

In addition to the pH effects, ionic strength also affects protein stability because, at low 

concentration counterions screen out charges on proteins, and disturb the water hydrogen bounds 

network at high concentration. That changes the energy associated with hydrophobic interactions 

and the hydrogen bounds. The effect of ionic strength on protein aggregation is highly protein 

dependant. Finally, it is often observed that strongly bound ions, especially divalent ones, and 

protein cofactors are required for protein stability and function. 

1.2. Insulin as a model of protein aggregation 

Insulin is one of the two main hormones involved in glucose metabolism regulation in 

mammals in general, and humans in particular. Consequently, insulin is of great importance for 

diabetes treatment, and insulin stability and aggregation are essential for safe diabetes therapy. In 

non-diabetic peoples, its concentration in blood oscillates between 60 and 800 pM 
22

. Insulin is 

synthesized and secreted in blood by the β cells of the islets of Langerhans in the pancreas. It is 
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released in the blood when glucose concentration in the bloodstream increases above a threshold 

(~ 4 to 6 mM). Due to the therapeutic importance of this protein, to the fact that insulin regulative 

function is known since 1922 
23

, to the relative cheapness of highly pure insulin and to the fact 

that it can fibrillate rapidly in vitro, a large number of studies has been performed on insulin. A 

lot is thus known about its composition, conformation and self-association behavior in solution. 

1.2.1. Diabetes 

Diabetes designates a number of very different diseases characterized by excessive 

urination and thirst as a common symptom. Among them, the most common are diabetes mellitus 

(particularly type 1 and type 2), characterized by high blood sugar concentration, that affect 

almost 350 million people worldwide 
24

.  

Type 1 diabetes mellitus, also called insulin-dependent diabetes, represent almost 10% of 

total number of diabetes mellitus cases. This disease is due to the auto-immune destruction of 

pancreatic insulin-producing β-cells. As insulin is essential to the cell ability to absorb glucose, 

reduced insulin production results in glucose accumulation in the blood, which is then flushed out 

into the urine. This disease is mostly treated by insulin replacement therapy, which requires 

frequent blood glucose concentration monitoring and subcutaneous insulin injections. Left 

untreated, the lack of glycemic control may lead to diabetic coma which is fatal in absence of 

medical assistance. 

Type 2 diabetes mellitus represent almost 90% of diabetes mellitus cases. It is caused by 

cell resistance to insulin, and also results in decreased cellular glucose absorption. Medication 

can act (i) on the amount of secreted insulin by the pancreas, (ii) on cells sensitivity to insulin 

and/or (iii) on the gastrointestinal rate of glucose absorption. Quite often, insulin injections can 

be added to the treatment. 

1.2.2. Insulin Therapy 

In order to treat type 1 diabetes mellitus patients, a lot of research has been done to 

improve insulin therapy and acceptability. First, research focused on increasing insulin purity to 

decrease allergic reactions and to decrease the potency variations between the batches. The purity 

increased thanks to the discovery of insulin crystallization in 1926 
25

 and the effect of zinc in 
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insulin crystallization in  1934 
26

. Finally, 99% purity was reached by the mid-1970 thanks to 

HPLC methods. 

First insulin was extracted from bovine or pigs insulin. Due to the similarity between 

human insulin and bovine or pig insulin (respectively 3 and 1 amino acid difference), bovine and 

pig insulins are functional in humans. Nevertheless, their use increases the risk of immune 

reaction. In 1982, the first synthetic human insulin, Humulin, was commercialized, increasing the 

patient tolerance to the treatment. 

Another problem of insulin subcutaneous injections is the time of action of the injection. 

Insulin tends to complex with other insulin molecules and zinc to form hexamers. In hexameric 

form, insulin does not interact with its receptor. Consequently, the effects of insulin injections are 

delayed, as active insulin concentration in plasma is maximum 3 hours after the injection, and 

decreased to zero 6 to 10 hours after the injection. The delay before the maximum effect of 

insulin can give rise to inappropriate patient responses, for instance after a meal. Furthermore, the 

lack of long-term effect forced patients to have multiple injections per day. To control the insulin 

time of action, researches were undertaken to obtain insulin preparations with various 

pharmacokinetic properties.  

One of the most important ideas was to play on insulin solubility in order to control 

insulin monomer release in blood. For instance, the addition of protamine decreases insulin 

solubility at neutral pH. As a result, insulin precipitate at the site of injection and is then slowly 

released in the blood. Similarly, the addition of zinc produces long-term acting insulin solutions. 

This reduces the number of injections per day. 

With the development of biological engineering, it became possible to produce insulin 

analogues. Non hexameric insulin were then produced and commercialized, that act faster than 

unmodified insulin. These new solutions reduces the patients constrains in meal planning. 

Nowadays, new insulin analogues are used, to obtain fast (Novorapid insulin for instance) or 

long-acting (Lantus insulin for instance) effects.  
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1.2.3. Insulin administration modes 

After the discovery of insulin and of its importance in type 1 diabetes mellitus treatments 

in 1921-1922 by Banting, Best, MacLeod and Collip, it was very rapidly established that 

subcutaneous and intraveneous injections were the only efficient administration mode. Over the 

years, researches have been done to develop administration modes that should be painless and 

easier to handle, but with few success. For instance, an inhalable powdered form of insulin was 

developed and commercialized in 2006 (Exubera insulin) but production has been stopped due to 

poor success of the product among patients and physicians. 

Artificial delivery systems were developed in the late 1970’s and the early 1980’s. Insulin 

automatic pumps allow continuous therapy with automatic adjustment of the insulin infusion to 

control glucose blood concentration. This system reduces the number of painful injections and 

was less time-consuming. They could be a perfect solution to type 1 diabetes mellitus. 

Nevertheless, the development of such systems appeared to be extremely difficult due to insulin 

aggregation in delivery systems. Studies reported that insulin precipitation appeared due to the 

continuous agitation of the protein 
27

 at a temperature comprised between 25°C (external pump) 

and 37°C (internal systems). This leads to the obstruction of the delivery system and necessitated 

frequent replacements of the catheters 
28

. Moreover, it was observed that the materials used in the 

pump were of high importance. Insulin solution presented faster aggregation on silicone rubber 

and hydrophobic materials than on hydrophilic materials 
29,30

. 

In pharmaceutical insulin solutions, some additives are used that affect insulin 

aggregation behavior. Sugar/polyols are often used to reduce protein-solvent interactions, which 

reduces the possible conformational variations of the proteins. Moreover, by decreasing the 

protein solvent access and ionic strength increase, some amino-acids like arginine, histidine or 

lysine have aggregation inhibition activity. Surfactant, like Polysorbate 20 and 80 (Tween 20 and 

Tween 80) are also often used to stabilize protein solutions in general and insulin solutions in 

particular. Their effect on protein stability is due to their weak binding to hydrophobic areas on 

surfaces and proteins. Consequently, one the one hand, protein-surfactant and surface-surfactant 

complexes becomes more hydrophilic, which facilitates the protein solubility and on the other 

hand, the presence of the surfactant on proteins and surfaces induces steric effects that makes 

more difficult for proteins to interacts together or with the surfaces. In pharmaceutical solutions, 
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the surfactant concentration is usually fixed just above the Critical Micelle Concentration (CMC) 

to obtain a monolayer of oriented surfactant molecules self-assemble at the interface. 

 

1.2.4. Insulin composition and conformation 

Insulin amino-acid sequence has been determined in 1955 by Frederick Sanger 
31

. Insulin 

is a small globular protein of 51 amino-acids. It is composed of two chains, A and B chains, of 21 

and 30 amino-acids respectively (see Figure 1.2). Those chains are linked covalently by two 

disulfide bridges, between residues A7 and B7, and between residues A20 and B19. The A chain 

also contains an internal disulfide bridge between residues A6 and A11. 

X-ray analysis of insulin crystals reveals that A chain is structured in two α-helices (A1-

A8 and A12-A20) with a non structured region between those two helices. The B chain presents 

an α-helix structure in the center of the chain (residues B8-B19). The B chain is mostly 

unstructured outside of this α-helix center region. 

Hydrophobic interactions between hydrophobic amino-acids of the two chains (A2, A3, 

A13, A16, B11, B12, B15, B18 and B24) form the hydrophobic core of insulin molecule 
32

, 

which is of great importance for its stability. The stability is reinforced by those disulfide bridges 

on the polypeptide chains organization, as shown by the strong pro-aggregative effect of the 

disulfide-reducing agent β-mercaptoethanol and dithiothreitol 
33

 (Ballet private communication). 
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Figure 1.2: A. Structure of human insulin. Each letter code for one amino-acid, see appendix, and are 
colored according to the side chain hydrophobicity (blue: least hydrophobic, red: most hydrophobic). 
B. 3-Dimensional structure of insulin monomer. Each amino-acids are colored according to the side 
chain hydrophobicity (blue: least hydrophobic, red: most hydrophobic).           

 (Insulin structure adapted from Brange et al. 
43

) 

A chain 

B chain 

A. 

B. 

90° 

rotation 
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1.2.5. Physiological formation of insulin complexes 

In vivo, insulin binds to its receptor in monomeric form, but in the blood insulin can 

associates into dimers when the insulin concentration is higher than 0.08 µM. Moreover, in 

presence of Zn
2+

, dimers can associate and form hexamers stabilized by two zinc ions, provided 

that the insulin concentration is sufficient (insulin concentration > 2.5 µM). It can be noticed that 

hexamer is the storage form of insulin in vivo in pancreatic β cells. In the blood, insulin is only 

monomeric, because of its low concentration (concentration < 0.1 nM) but in pancreas β cells 
34

 

and in therapeutic insulin preparations, insulin is mainly in hexameric form (insulin concentration 

> 200 µM). 

Equilibrium constants of monomer-dimer-hexamer insulin formation have been 

determined by equilibrium ultracentrifugation in the 1970’s on bovine 
35,36

 and porcine 
37

 insulins 

and for human insulin, at pH 7, 25°C. For human insulin, Kdimer ~14*10
-4

 M
-1

, Khexamer ~3*10
-8

 

M
-2

 for zinc-free insulin and Khexamer ~15*10
-10

 M
-2

 for insulin with zinc 
38

. These values show 

that an increase in insulin concentration or in Zn
2+

 concentration shifts the equilibrium to higher 

amounts of hexamer. 

It must be noticed that in the experiments exposed in this thesis, insulin concentration in 

fixed at 86 µM. Using the above equilibrium constants, one can calculate that more than 85 % of 

insulin is in hexameric form, 10 % is in dimeric form and only 5 % is in monomeric form. 

1.2.6. Aggregation of insulin solutions 

As the clinical applications of insulin in diabetes therapy rapidly expanded in the late 

1970’s and the early 1980’s, it became rapidly prominent that insulin aggregates rapidly in vitro 

in artificial delivery systems, particularly in the presence of hydrophobic surfaces 
29,30,39

 and 

under agitation 
27,40

. Insulin precipitation leads to the obstruction of delivery systems 
28

, which 

slowed the development of artificial devices to deliver insulin to patients. Moreover, some insulin 

treated patients developed injection amyloidosis, characterized by the presence of high molecular 

mass insulin fibrils at the site of frequent injections 
41–43

.  

One of the most important types of protein aggregate organizations is amyloid fiber. They 

are observed as insoluble fibrous protein aggregates and are characterized by extended cross-β-
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sheet structure, orientated perpendicular to fibril main axis. These β-sheets are stabilized through 

hydrogen bounding between the protein backbone and by hydrophobic interactions between 

hydrophobic amino-acids. 

Both in vitro and in vivo, formed aggregates are fibrils which present all of the 

characteristics of amyloid fibrils 
44

 (Figure 1.3):  

– binding of the Congo red dye with ‘‘apple-green’’ birefringence.  

– binding of the thioflavin T (ThT) fluorophore with red-shift of the excitation and emission 

wavelengths 

– an elongated, unbranched fibrillar morphology 

– a nucleation step preceding fast aggregation 

– a characteristic cross-β X-ray diffraction pattern 
45

 (see Figure 1.4.A) revealing a repeated core 

structure consisting of predominantly β-sheets, orientated perpendicular to the fibril main axis 

46,47
.  

 

 

Figure 1.3: 3-Dimensions structure of Aβ peptide amyloid fibril 

(Figure modified from Blake et al. 
108

) 
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Figure 1.4: A. X-ray diffraction of insulin amyloid fibrils (Obtained from Ivanova et al.48)  B. Insulin fibrils 
observed in AFM (Obtained from Jansen et al.

49) 

                    The insulin β-sheet structure is stabilized by hydrogen bounding between the 

proteins backbones and by hydrophobic interactions between hydrophobic amino-acids Ile
A2

, 

Val
A3

, Leu
B11

 and Leu
B15

 
50

. In electron microscopy (Figure 1.4.B), these fibrils are seen as long 

unidirectional fibers whose diameter ranged from 3 to 15 nm and whose length ranges from 

hundred nanometers to several micrometers 
51

. Consequently, understanding the molecular 

mechanism of insulin instability and fibrillation has been a widely studied issue in order to 

develop safer insulin solutions and delivery devices. 

By studying the mechanism of insulin inactivation and precipitation at pH 2, 100°C, it 

was realized that insulin fiber formation precedes its precipitation 
51–56

. Furthermore, these fibrils 

are formed in three steps: (i) formation of nuclei, which are active centers of fibril formation, 

were protein association is faster than protein dissociation; (ii) growth of fibrils on these 

nucleation centers; and (iii) formation of large fibrils aggregates that precipitates. Consequently, 

the nuclei formation appears to be the first phenomena of insulin aggregation. The study of this 

process shows that the nucleus formation requires simultaneous interaction of 3 to 4 insulin 

molecules 
56

, which suggests that the nucleation core is formed from insulin monomers. 

Since the late 1920’s and the availability of high purity insulin solutions, it has been 

observed that insulin is irreversibly inactivated and precipitates in acid conditions 
57,58

, with a 

reaction rate that progressively increases as the pH decreases below 3. Moreover, the inactivation 

rate of insulin in acid conditions appears to be proportional to insulin concentration and to obey 

A. B. 
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the Arrhenius law for temperatures above 50°C 
58

. This shows that activation energy is the most 

important parameter on insulin aggregation, at least for tested pH (2 < pH < 4). It was found later 

that, if aggregation nucleus formation requires temperature above normal, insulin fibril growth at 

pH 2 is also possible at ambient and even low temperatures 
56

. Moreover, the aggregation of 

insulin in neutral therapeutic solutions used in clinical applications showed that low pH and high 

temperatures were not prerequisites for insulin aggregation, indicating the formation of insulin 

fibrils did not require complete unfolding of insulin molecules. 

1.3. Minimum peptide sequence responsible for protein aggregation 

 1.3.1. Background knowledge 

To understand the structural mechanisms of protein aggregation, and in order to develop 

strategies to inhibit that phenomenon, different studies have been done to discover the minimum 

peptide sequence explaining the full-length protein aggregation. The researched peptides were 

proposed (i) to be able to aggregate by themselves; (ii) the corresponding sequence in full length 

protein should be structurally involved in stability of the final aggregate and (iii) in solution, the 

peptide should interact with the full length protein, which may change the protein aggregation 

kinetic. As a result, some peptide sequences, derived from protein sequence and able to act on the 

full-length protein aggregation were discovered in different proteins known to be prone to 

aggregation. It is observed that those peptides are mostly hydrophobic, that they have tendencies 

to adopt mostly β-strand structures and to form by themselves large oligomers organized in 

fibrils, even for peptides as short as 3 or 4 amino-acids 
59–63

. For instance, an 8 amino-acids prion 

peptide segment (residues 113–120: AGAAAAGA), a 6 amino-acids modified peptide from Aβ 

peptide (residues 16–20: KLVFF) and an IAPP peptide 5 amino-acids segment (residues 22–27: 

NFGAIL) can delay fibril formation of their respective full-length protein 
64–67

. Moreover, β-

synuclein, the non-amyloidogenic homolog of α-synuclein can inhibit the α-synuclein 

aggregation 
68

. A derived approach has been successfully studied on Aβ peptide with the use of 

small hybrid peptides, consisting in of a recognition domain (here the residues 15 to 25 of Aβ 

peptide) designed to bind a specific protein and a disrupting domain, here a polylysine that would 

alter the protein aggregation 
69,70

. Nevertheless, all those anti-aggregative activities are observed 

only at high relative concentration, since effective protective compound concentration ranged 

from equimolar concentrations to 10 times the protein concentration. On the contrary, some 
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peptides derived from protein sequences have been discovered that induces accelerated the full-

length protein aggregation kinetic at low relative concentrations compare to the protein 

concentration 
48,71,72

. Those peptides which enhance protein aggregation can be called pro-

aggregative peptides or amyloidogenic peptides. Their aggregative effects on proteins are 

observed for relative concentrations of 1 pro-aggregative peptide for 10 to 100 proteins.  

An interesting fact is that many proteins or peptides presents both an enhancement and 

inhibition activity on proteins aggregation kinetics, depending on their relative concentrations. 

For instance, α1-antichymotrypsin has been observed to both accelerate (for α1-antichymotrysin / 

Aβ peptide molar ratios lower than 1 to 100) and inhibit β-amyloid (Aβ) fibrillation (for molar 

ratios raised to 1 to 10) 
73,74

. Apolipotrotein E (ApoE) is another example of protein presenting 

both Aβ peptide aggregation enhancement and inhibition activity, depending on the relative 

concentration of the two proteins 
73,75,76

. In contrast with α1-antichymotrypsin, the apo E4 dual 

effect on Aβ fibrillation is reversed: Apo E4 inhibits fibrillation when incubated at concentrations 

lower than those that accelerate fibril formation. 

These stoichiometric effects are important information in understanding molecular 

mechanisms of aggregation and the molecular effects of compounds affecting the aggregation 

kinetic. Indeed, according to the nucleation theory, a compound that acts at a higher 

concentration than the protein concentration is a compound that is changing monomer/monomer 

interactions or monomer/aggregation nuclei interactions. At the opposite, a compound that has 

effects at lower concentrations than protein concentration must act on the aggregation nuclei 

formation. 

1.3.2 Case of insulin: minimum peptide responsible for insulin aggregation 

In the case of insulin, kinetic x-ray solution scattering and cryo-electron microscopy 

images show that before fibrillation, the α-helical structures of insulin molecules undergo 

conformational transition into a flat β-sheet rich state 
77,78

. The first atomic-level view of the 

interactions between insulin segments which may be part of fibrillar spine came from single 

crystal structures of the fibril forming peptide segments LYQLEN (residues A13 to A18) and 

VEALYL (residues B12 to B17) 
79

. Moreover, different studies have proposed the B chain, or at 

least a segment of it, to be of very high importance in insulin fibril structure stabilization. The 
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LVEALYLV segment (residues B11 to B18) is able to recognize and bind insulin 
80

. Moreover, 

the addition of hexameric arginine tail on that peptide induces a reduction of insulin aggregation 

rate at equimolar amounts of peptide and insulin. Consequently, this sequence was especially 

proposed to be a main contributor to the spine formation of insulin fibrils 
80

 (see Figure 1.5).  

 

Figure 1.5: Human insulin amino-acid sequence. A chain in red, B chain in blue, disulfide bridges in 
yellow. Segments SLYQLENY and LVEALYL emphasized in dark red and dark blue respectively. 

(Figure from Ivanova et al. 
48

) 

Ivanova et al. 
48

 shown that the LVEALYL peptide and the SLYQLENY peptide 

(residues B11 to B17, and A12 to A19 respectively, see Figure 1.5) were able to aggregates in 

amyloid fibrils by themselves (Figure 1.6). Moreover, it appears that the LVEALYL peptide was 

able at sub-stoichiometric amounts (1 peptide for 10 to 40 insulin molecules) to highly reduce the 

insulin aggregation lag-time (from 10 hours to 1 hour) and to increase the aggregation growth 

phase at pH 2.5 (Figure 1.7). According to the nucleation theory, these effects at low 

peptide/protein stoichiometry show that this LVEALYL peptide must accelerate the aggregation 

nuclei formation. Consequently, that LVEALYL peptide was proposed to be the central structure 

of the insulin fibrils, stabilizing the fibril by hydrophobic lateral chain interaction which leads to 

the formation of dehydrated, highly complementary interface of the type termed ‘‘steric zipper’’ 

(see Figure 1.8) 
79

. This model suggests that fibril is stabilized in the long axis by H-bounding 

between parallel 
81,82

 or antiparallel β-sheets 
79,83,84

 main chains. Moreover, due to the B chain β-

sheet organization and to the disulfide bridges binding the A and B chains of insulin, the A chain 

also has to be organized in β-sheet in the fibrils. Molecular dynamics calculations suggest that the 

A chain segment SLYQLENY (residues A12 to A19) is in a β-sheet structure in a peripherical 

position in the fibril 
48

. 
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Figure 1.6: Electron microscopy images showing that LVEALYL and SLYQLENY peptides aggregate by 
themselves in fibril structures. Scale bars: 400nm. 

(Figure from Ivanova et al. 
48

) 

 

Figure 1.7: Fibrillation assay showing that B-chain LVEALYL accelerates insulin fibril formation when 
added to the reaction mixture at low concentrations, but inhibits insulin fibril formation at higher 
concentrations.  

(Figure from Ivanova et al. 
48

) 
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A  B   

Figure 1.8: A. View down fibril axis showing one layer of interdigitated pair of insulin molecules, which 
interlock tightly to form the dry steric zipper interface. B. Scheme of amino-acid position in the dry steric 
zipper. 

(Figure from Ivanova et al. 
48

) 

In the model, fibril formation involves by insulin monomer partial denaturation, leads to 

energetically unfavorable exposure of the VEALYL segment to solvent. This model is supported 

by the fact that insulin at equimolar concentration with the RRRRRRLVEALYLV peptide, 

containing residues B11-B17 of the B chain and a long arginine end which is known to disturb 

aggregation through reduction of protein/solvent interactions, can increase by a factor of 2 the 

insulin fibrillation lag time at pH 2 without shaking 
80

. Moreover, in 2009, Ivanova et al. 
48

 shows 

that the 7 amino-acids peptide sequence LVEALYL, similar to the insulin sequence in chain B 

(LVEALYL, residues B11–B17), was able at sub-stoichiometric concentrations to decrease the 

nucleation step of human insulin at pH 2.5. At the contrary, the peptide SLYQLENY derived 

from the insulin segment in A chain (residues A12 to A19) had no effect on insulin aggregation 

kinetic, showing that this segment should be peripherical in the spine of insulin fibril structure.  

One problem with these reports is that experiments on pro or anti-aggregative peptides 

have often been performed without any considerations of the container surface chemistry and 

hydrophobicity, and the type of containers used in the aggregation experiments is information 

that is often not even present in the experimental procedures. Nevertheless, most of the 

experiments are done in plastic (hydrophobic) containers (plastic 96 well plates, or eppendorfs 

usually). But, as this LVEALYL peptide is mostly hydrophobic, it is probably able to interact 

strongly with hydrophobic surfaces. Since it is known that surface hydrophobicity has important 
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effect on insulin nucleation rate 
40,85

, the effect of that peptide on insulin aggregation kinetic has 

to be studied in respect to the presence or not of hydrophobic surface. Conversely, realizing that 

specific peptides are involved in insulin aggregation on material surfaces allow to study the 

molecular mechanism of insulin aggregation by mutating this peptide. This will be an element of 

the strategy explained in part 1.7. 

1.4. Influence of material surfaces in insulin aggregation 

 1.4.1. Previous studies 

At neutral pH, insulin aggregation is greatly enhanced by agitation and presence of 

hydrophobic surfaces, including air/water surfaces 
29,86,87

. Using an experimental system made of 

glass container filled with insulin solution and agitated at selected speed and temperature, in 

presence of air/water interface or various material beads,  Sluzky et al. 
40,85

 reproduced the 

conditions present in many drug delivery systems (temperature, mechanical stresses, presence of 

liquid/solid interface and air/liquid interface) (see Figure 1.9). Systematic studies were performed 

in 1991 and 1992 on insulin aggregation kinetic of the effects of insulin concentration, agitation 

rates, air/water interface, hydrophobicity of the container surface and surface area.  

Those studies at neutral pH showed that insulin stability is increased at high concentration 

in the presence of air-water interface (see Figure 1.10.A) and Teflon-water interface (see Figure 

1.10.B). Since high concentrations favor hexamer formation, it was concluded that insulin 

hexamers have fewer propensities to participate to aggregates formation, and that insulin 

monomers instead take part to aggregate formation. It must be noted that insulin aggregation 

kinetics at pH 7 also exhibit the 3 characteristic phases (see Figure 1.10): (i) a long lag-phase 

where insulin concentration is not significantly modified and where no fibrils can be detected in 

solution. (ii) a fast aggregation phase, where soluble insulin concentration decreases rapidly and 

where fibrils concentration in solution increases and (iii) a plateau phase where the amounts of 

aggregates and monomers reached steady state. 
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Figure 1.9: Experimental system used by Sluzky et al. for studying insulin aggregation at 
neutral pH.  

Image from Ballet PhD Thesis 
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Figure 1.10: Concentration profiles of insulin aggregation upon shaking at 37°C. 

(A) Effect of concentration at the air-water interface: Samples agitated at 250rpm at initial insulin 

concentrations of 0.6 (▲), 0.3 (■), and 0.1 (●) mg/mL. (B) Effect of concentration at the teflon-water 

interface: Samples with 5 teflon spheres agitated at 80rpm at initial insulin concentrations of 0.6 (∆), 0.4 

(□), and 0.2 (○) mg/mL. (C) Effect of hydrophobic surface area: Samples with 5 (□) and 10 (○) teflon 

spheres agitated at 80rpm. (D) Effect of agitation rates: Samples agitated at 80 (□) and 160rpm (○) at 

initial insulin concentration of 0.6mg/mL. (E) Effect of surface hydrophobicity on agitation-induced insulin 

fibrillation: Samples at initial concentration of 0.6mg/mL agitated at 160rpm in the presence of teflon (■), 

polypropylene (▲), siliconized glass (∆), and unmodified glass spheres (○). 

(Figure modified from Sluzky et al. 
40,85

) 
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Moreover, when the hydrophobic surface area (see Figure 1.10.C) or the agitation rate are 

increased (see Figure 1.10.D), insulin aggregates with both a shorter lag time and a higher fibril 

growth rate. It was also noticed that increasing the hydrophobicity of the material increased the 

aggregation rate of insulin (Figure 1.10.E). 

More recently, Ballet et al. 
88

 developed a new setup, that allows multiple conditions to be 

tested in parallel using 96 microwells plates: replicates and different insulin solution conditions 

can be tested in the same time and different plate coating are commercialize and their effect on 

insulin aggregation kinetics can be tested easily. Particularly, hydrophilic PEG coated plates, 

proposed to be protein non-binding, were used as negative control in surface induced insulin 

aggregation. Ballet shows that an insulin pre-incubated hydrophobic surface was able to further 

shorten the nuclei formation time of fresh insulin solution. At the contrary, an insulin solution 

which has been pre-incubated on a hydrophobic surface was not able to aggregate faster than a 

fresh insulin solution when put in contact with a new hydrophobic surface. This showed that the 

nuclei are formed on the hydrophobic surface and remained strongly adsorbed on the surface. 

Moreover, it was shown that fibril growth was a mechanism which needed an interaction with the 

hydrophobic surface, as no fibril growth has been observed in solution.  

1.4.2. Mechanisms of insulin aggregation on hydrophobic surfaces 

Based on these observations, a model describing the mechanism of insulin aggregation at 

neutral pH in aqueous solutions in contact with hydrophobic surfaces was proposed 
88

, see Figure 

1.11. In this model, insulin monomers, dimers and hexamers would reversibly adsorb on the 

material surface, exposing hydrophobic amino-acid side-chains. A new energetically favorable 

conformation would appear for insulin monomers, which involved a deformation of the protein to 

expose its hydrophobic core to the hydrophobic surface, detected by DnaK chaperone recognition 

of adsorbed insulin. Then, different partially unfolded proteins expose their hydrophobic core 

would interact together on the hydrophobic surface and form aggregation intermediates that 

eventually growth. After reaching a certain size, those intermediates would have sufficient 

surface area to become stable, leading to the construction of a nucleus of aggregation, and can 

start reacting with native molecules. As a result, a surface pre-incubated long enough with insulin 

solution is able to act as seed for a fresh insulin solution, reducing the nucleation time of that 

insulin aggregation kinetic. As the insulin hydrophobic core would be also involved in 
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protein/protein contact within dimers and hexamers, the hydrophobic core is more stabilized in 

the insulin complexes. So, the hydrophobic core interaction with the hydrophobic surface is less 

energetically favorable for insulin complexes than for monomeric insulin, which explains why 

dimers and hexamers are more stable than monomers and have fewer propensities to participate 

into the aggregation process 
89

. Other studies proposed the effect of low pH on insulin 

aggregation kinetic mainly results from the influence of pH on dimer and hexamer stability of 

insulin, because in acidic conditions, dimers and hexamers are unstable 
90

. 

After the nucleus formation on the surface, insulin monomers would interact with this 

nucleus and grow into fibril. Then, when the fibril reaches a certain size, mechanical stress could 

break the fibril, which is released in solution, and the nucleus is able to form a new insulin fibril. 

In this model, the increased stability of higher concentrated insulin solution is due to the 

occupation of the hydrophobic surface by dimers and hexamers, which reduced the surface 

available for the steps of nucleus formation: monomer adsorption, unfolding and interaction with 

other unfolded monomers. This model would also explain the insulin aggregation kinetic. The 

slow formation of stable nuclei on the surface would explain the lag-phase observed in insulin 

aggregation experiments. The fast insulin depletion following the end of the lag-phase would be 

explained by the involvement of native insulin molecules into the fibril growth on the surface. 

Nevertheless, unanswered questions remained. Amino-acids involved in insulin 

nucleation and fibril formation are still unknown. Moreover, the insulin conformational change 

kinetic on the surface is yet not understood. These questions will be the aim of this thesis. 
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Figure 1.11: Insulin surface-induced aggregation model as proposed in Ballet et al. N: Native insulin, U: 
Unfolded insulin. 

 

1.5. Other cases of surface-induced protein aggregation 

It must be noted that this surface dependant mechanism, characterized by nuclei formation 

on the surfaces are observed for other proteins than insulin. For instance, IgG antibodies have 

been shown to aggregate at the hydrophobic air/water interface 
91

 and β amyloid peptide is 

known to present a surface induced aggregation behavior 
92

. Moreover, Ballet shows that 

calcitonin also aggregates in presence of hydrophobic surface. Similarly to what is observed for 

insulin, preincubated surfaces can act as seeds for fresh calcitonin solution. Furthermore, DnaK 

chaperone is able to bind adsorbed calcitonin, whereas it does not bind to soluble calcitonin, 

which proves that adsorbed calcitonin presents structural changes upon hydrophobic surface 

adsorption. Consequently, it appears that insulin material dependant aggregation studies can be 

generalized to other proteins of therapeutic interest. 

1.6. Additives used to inhibit or accelerate protein aggregation 

Additives, like arginine 
80

 and small molecules found in vivo in organisms in stress 

conditions (high or low temperature, presence of free radical compounds that oxidize proteins 

and can leads to denaturation and aggregation) like ectoine, citrulline, betaine and trehalose (see 

U 

Hydrophobic surface 
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Table 1.1) can inhibit proteins aggregation 
93

 by interacting with and stabilizing hydrophilic 

groups on protein by solvent hydration (also see page 14). Other compounds such as lecithins, 2-

hydroxypropyl-β-cyclodextrins, and polymeric surfactants reduce protein aggregation by binding 

either to hydrophobic interfaces or to hydrophobic protein domains 
43,86,94,95

. These aggregation 

inhibitors are fairly nonspecific and are generally effective only at relatively high molar 

concentrations above the targeted unstable proteins. For example, 300 mM betaine suppressed 

aggregation of 0.17 mM insulin, a ~1700-fold molar excess 
93

. On the contrary, some compounds 

can enhance protein aggregation. For instance, it is known that aluminium (AlCl3), copper and 

cyclodextrins are able to induce faster Aβ peptide aggregation 
96,97

. But, in the same way than the 

previously exposed aggregation inhibitors, these aggregation enhancers are effective only at a 

high molar excess (~400-fold molar excess). 
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molecule chemical structure concentration effect reference 

arginine 

 

100mM 

75 h protection of 

0.52mM insulin 

solution 

Gibson et 

al. (2006) 

ectoin 

 

300mM 
suppress 0.17mM 

insulin aggregation 

Arora et al. 

(2004) 

citrulline 

 

300mM 
suppress 0.17mM 

insulin aggregation 

Arora et al. 

(2004) 

betaine 

 

300mM 
suppress 0.17mM 

insulin aggregation 

Arora et al. 

(2004) 

trehalose 

 

300mM 
suppress 0.17mM 

insulin aggregation 

Arora et al. 

(2004) 

2-
hydroxypropyl-
β-cyclodextrin 

 

5.2mM 

suppress 0.17mM 

insulin solution 

aggregation 

Brewster et 

al. (1991) 

Table 1.1: Chemical structures and effects of compounds known to inhibit protein aggregation, and 
particularly insulin aggregation. 

In vivo, some proteins also exist that prevent protein aggregation. Heat shock proteins 

(hsp), also called chaperones are able to inhibit proteins aggregation and some can disaggregates 

precipitated proteins 
98,99

. For instance, in E. coli ~250 proteins are disaggregated by the 

combination of chaperones DnaK, DnaJ and ClpB 
100

. Moreover, in vitro, DnaK chaperone and 

α-crystallin can prevent insulin aggregation 
88,101,102

. These chaperones are able to recognize 

exposed hydrophobic segments of proteins. In vivo, chaperones assist the folding of nascent 

polypeptide chains, the refolding of denatured proteins and prevent aggregation of unfolded 

proteins that expose hydrophobic parts. They were identified as “heat-shock” proteins because 

their expression increases after a brief cell exposure to heat that induces formation of large 
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number of protein aggregates 
103,104

. Nevertheless, chaperone proteins cannot be used easily in 

therapeutic protein stabilization, because their injection to patients induces immune response. 

1.7. PhD project experimental and strategy 

This literature review shows that surfaces, agitation, temperature and aggregation-

enhancer peptides all have a profound influence on protein aggregation. A better understanding 

of the interactions between these parameters on insulin aggregation could allow the development 

of more efficient insulin solutions and automatic delivery systems which may improve diabetes 

mellitus therapies. Nevertheless, agitation, temperature and aggregation enhancer peptides have 

never been studied with respect to the container surface physico-chemical properties, particularly 

its hydrophobicity, albeit the presence of hydrophobic surfaces have been shown to be of high 

importance on insulin aggregation kinetic. Moreover, it has been proved that aggregation nuclei 

formed on the hydrophobic surface but, due to the small amounts of protein involved in this 

process, few data are available to understand the molecular mechanism of protein adsorption and 

nuclei formation on the surfaces.  

Nevertheless, different questions have yet to be answered. (i) The number of insulin 

molecules that are necessary to form a stable aggregation nucleus is not known. Moreover, the 

number of nuclei on the surface and their distribution has to be studied. (ii) Furthermore, even if 

final insulin fibril structure has been resolved, aggregation insulin nucleus structure and on the 

surface is not known. (iii) It has been observed that insulin aggregation at pH 2 respect Arrhenius 

law. It can be supposed that it is the case at neutral pH, so it should be possible to calculate 

activation energy of the different phases of insulin aggregation. (iv) Moreover, the binding 

energy of insulin monomer/insulin aggregation nucleus interaction should be measured to 

describe the fibril growth from the nucleus. (v) Finally, the orientation of the nuclei and of the 

fibril growth on the surface will be studied. 

In order to solve these questions, different experimental strategies have been used in this 

thesis. (i) The aggregation nuclei distribution on the surface can be studied both by Atomic Force 

Microscopy (AFM) and by direct measurements of adsorbed mass on insulin incubated surface 

by Bicinchoninic Acid Assay (BCA) experiments. Combining these two techniques, it is possible 

to obtain the average mass of one aggregation nucleus, and so the number of insulin monomers 

involved in the nucleus. (ii) Nucleus structure on the surface can be analyzed by Fourier 



 

 - 34 - 

Transformed Infrared Spectroscopy in Attenuated Total Reflection mode (ATR-FTIR), which 

gives information on the secondary structures of the proteins at the proximity of the studied 

surface. Moreover, Thioflavin T fluorescence can be used to detect the formation of extended 

intermolecular β-sheets. (iii) Studying insulin aggregation kinetics at different temperatures for 

constant insulin concentrations may determine if insulin aggregation at neutral pH respects 

Arrhenius equation, which should make possible to calculate activation energy for the nucleation 

and the fibril growth, depending on the surface chemistry. (iv) Surface Plasmon Resonance 

imaging (SPRi) will be used to analyze insulin adsorption and desorption kinetics for different 

surface chemistry. This should give information on insulin/surface and insulin monomer/insulin 

aggregation nucleus interaction energy. (v) The use of LVEALYL peptide and of mutants of that 

peptide will be able to understand the nucleus and fibril orientation on the surface. 

Previous studies on insulin aggregation on hydrophobic surfaces have been done at scales 

that makes difficult to detect events on the surface. For instance, in Sluzky studies, 2 mL of 

solution was in contact with 5 cm
2
 of surface. In Ballet experiments, 200 µL of solution was in 

contact with 1.5 cm
2
 of surface. In these conditions, in solution analysis the events that happen on 

the surface gives too small signals compared to overall solution signals to be easily detectable. 

Consequently, to obtain information on molecular events that happen on the surface, different 

surface analysis techniques were used. These techniques (ATR-FTIR, SPRi, fluorescence 

microscopy) allow surface analysis thanks to a limited penetration sensibility (see Figure 1.13). 

As a result, in these techniques, adsorbed proteins are easily detectable, with only small signals 

due to protein in solution. 
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Figure 1.13: Scheme of the experimental procedures of SPRi, ATR-FTIR and fluorescence microscopy as 
used in this thesis. 

 

1.8. Thesis overview 

This thesis is organized around 3 main articles, to which I made essential or substantial 

contributions. In the first chapter (Ballet et al. 2012 
105

) of the results section, insulin aggregation 

was monitored using the ThT fluorescence. I analyzed the effect of temperature, agitation and pH 

variations on insulin aggregation kinetic in hydrophobic and hydrophilic 96 micro-wells plates. 

Particularly, I studied the effects of those parameters on the two phases of insulin aggregation: 

the lag-phase or nucleation phase, and the aggregates growth-phase. Our results show that the 

insulin aggregation nucleus formation requires lower activation energy in the presence of 

hydrophobic surfaces than in the presence of hydrophilic ones. But the further growth of the 

aggregates appears to be independent of the underlying materials. The studies as a function of 

temperature show that 2 mechanisms of insulin aggregation coexist: homogeneous aggregation in 

the bulk solution and heterogeneous aggregation on hydrophobic surfaces. This quantitative 

analysis allows delineating the respective part of each mechanism as a function of temperature. 
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In the second chapter of the results section (Nault et al. 2012 a 
106

), SPRi, ATR-FTIR and 

microscopy fluorescence were combined to analyze the insulin aggregation mechanism on the 

material surface and in real time. In SPRi, it was observed that insulin adsorbs on the 

hydrophobic surface. Interestingly, it appears that a fraction of this adsorbed insulin population 

binds very strongly on the surface, as it is not easily washed. Moreover, this pool of strongly 

adsorbed insulin increases when insulin stays in contact for longer times, and become more and 

more strongly adsorbed. In infrared spectroscopy (FTIR and ATR-FTIR), it was observed that 

insulin structure is considerably modified by the adsorption on the surface, exhibiting a new 

conformation, different from soluble insulin and from aggregated insulin. This conformation is 

enriched in β-sheet structure. This is confirmed by fluorescence microscopy results, which shows 

an increase in ThT fluorescence on the hydrophobic surface, revealing the formation of extended 

β-sheets in adsorbed insulin structures. I will therefore distinguish several steps in the formation 

of amyloid fibers on the surface. 

Finally, in the third and last part of the results section (Nault et al.  2012 b 
107

), the effect 

of peptides acting as insulin nucleation-enhancers was studied. It appears that these peptides act 

only when adsorbed on the hydrophobic surface, independently to the pH, where they formed β-

sheets. Moreover, using mutated peptides, I observed that peptides accelerate insulin nucleation 

more efficiently when they are more likely to form β-strand structures when adsorbed on 

hydrophobic surfaces. 

These results are discussed thoroughly in the last chapter of this thesis. I present a model 

describing our mechanistic understanding of peptide-nucleation enhancement on hydrophobic 

surfaces during insulin aggregation. 
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Chapter 2: Materials and methods 
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2.1. Chemicals and Products 

Filters 

Millex-GV Durapore PVDF 0.22µm (33mm) were puchased from Millipore. 

Microplates 

Greiner Bio One flat bottom clear polystyrene 96-well microplates, Nunc Nunclon™ Δ Surface 

96-well black microplates, and Corning flat bottom polystyrene “non-binding surface” 96-well 

black with clear bottom microplates were purchased from Sigma-Aldrich or Dutscher. 

Proteins 

Recombinant human insulin (HI), expressed in yeast (Ref I2643), albumin from bovine serum 

Cohn Fraction V (BSA) (Ref A7906) were purchased from Sigma Aldrich. 

Protein Assays/Dyes/Reagents 

Bicinchoninic acid kit (Ref BCA1), QuantiPro™ BCA assay kit (Ref QPBCA), thioflavin-T (Ref 

T3516) and hexadecanethiol (Ref 674516) were purchased from Sigma-Aldrich. PEG-thiol 

(polyethylene glycol thiol, 8 monomer units, MW=569.8 g.mol-1) was purchased from Iris 

Biotech GmbH. 

Insulin solution aggregation preparation  

The buffer used in the experiments is TBS (25mM TRIS-HCl, pH 7.3, 125mM NaCl, 2mM 

MgCl2) were freshly prepared and sterilized by filtration through 0.22µm Millipore Stericup filter 

units. Human insulin (HI) (recombinant, expressed in yeast - Purity ≥ 98%) was purchased from 

Sigma-Aldrich (I2643) and used without further purification. The zinc content was ≤ 1% (w/w), 

corresponding to approximatively 5.5 Zn2+ per insulin hexamer. As Zn2+ influences the 

equilibrium of insulin hexamer formation, we tested the effect of Zn2+ addition (up to 10 µM) on 

HI aggregation: HI aggregation kinetics was not modified. All solutions of HI were prepared at a 

concentration of 0.5 mg.mL-1 (86 µM) by adding human insulin to TBS. The resulting cloudy 

mixture was dissolved by lowering the pH to about 3.0 to 3.5 using HCl 1M (100 µL for 20 mL 

of HI solution). The pH was then adjusted with 1M NaOH (volume added ~90 µL for 20 mL of 

HI solution) to pH 7.3 ± 0.1. 
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For experiments performed in acidic conditions, HI solutions were also prepared at pH 2.5 

in 50 mM Glycine buffer without further pH re-adjustments. The HI concentration was 

determined by UV absorbance at 280 nm using an extinction coefficient of 5.53 mM-1cm-1 and 

molecular weight of 5807.57g.mol-1. Exact concentrations were obtained by dilution with buffer 

prior to the final filtration through sterile 0.22µm Millex GV low-protein binding filters, to obtain 

a maximum seed-free condition at the onset of kinetics. The insulin concentration was checked 

after filtration, confirming that no material was lost during filtering. 

Peptide solution preparation  

peptide 
solubilisation 

concentration 
dissolved in 

LVEALYL 

4.3mM 

20mM 

NaOH 

(pH=12.3) 

LVDALYL 

LVTALYL 

LPEALYL 

LVEPLYL 

SLYQLENY 

LVEALWL 
860µM 

LVAELYL 

LVEVLYL 

2.15mM 

LVEVLFL 

SVSASYS 

10mM 

NaOH 

(pH=12) 

LYQLENY 

LYQLEAY 

LVPTPYL 
860µM 

FSFSFSF 

LVOALYL 
4.3mM 

20mM HCl 

(pH=1.7) LVKALYL 

LVPTLYL 

4.3mM H20 

SVSPSYS 

LVTPLYL 

LSPSPSL 

LYALANY 

LSSALSL 

Table 2.1: Solubilisation conditions of peptides used in this thesis. Basic conditions are used to obtain 
charged glutamate (E), aspartate (D) and terminal carboxyl residues on peptides, which help 
solubilisation. Acid conditions are used to obtain peptides with charged terminal amine residues and 
Lysine (K) or Ornithine (O) residues, which help solubilisation. All peptides were purchased from 
Genecust, with >99% purity. 

 



 

 - 41 - 

 

 

 

Fluorescence microscopy filters 

The light filters system used in fluorescence microscopy was purchased from Olympus 

(U-MCFPHQ). 

 

Figure 2.1: Fluorescence filters used in fluorescence microscopy experiments and Thioflavin T excitation 
and emission spectra. 

 

2.2. Methodologies 

2.2.1. Protein Aggregation Assays: experimental Set-Up 

To study the effects of agitation, temperature or material surfaces on insulin aggregation 

kinetics, it is necessary to have an experimental setup allowing a fast and easy monitoring of 

insulin aggregation in replicates. Consequently, 96 micro-wells plates have been used, as they 

offer easy handling and allow good statistics. Moreover, different surface treatments are 

commercially available. Particularly, untreated polystyrene plates, which are hydrophobic, and 

PEG-coated plates, which are non-charged highly hydrophilic plates, have been used. Insulin 

aggregation, which is characterized by the formation of large intermolecular β-sheets, was 
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monitored by the binding of thioflavin T (ThT). ThT binding to β-sheets results in a characteristic 

fluorescence signal (excitation wavelength = 450 nm, emission wavelength = 482 nm). 

Furthermore, 96 micro-wells plates can be agitated and can be incubated at a chosen temperature 

easily. 

Protein aggregation assay used plastic 96 multi-well plates as a material surface to which 

protein solutions were exposed. Plain polystyrene [Greiner Bio One (clear) or Nunc Nunclon 

(black), contact angle = 85° (±5)] or (PEO)-like treated [“Non-Binding” Corning (black with 

clear bottom), contact angle = 5° (±5)] surfaces were chosen as a model of hydrophobic or 

hydrophilic surfaces, respectively. Protein binds to untreated polystyrene through hydrogen 

bonding and hydrophobic interactions. The non-ionic hydrophilic layer on the well surface of 

(PEO)-treated microplates strongly reduces hydrophobic and ionic interactions with proteins. 

Protein aggregation was monitored by ThT (20µM) fluorescence and/or turbidity 

measurements. A minimum of 8 replicates, corresponding to 8 wells, were measured for each 

sample to explore the well-to-well variation. The plates were filled with 200-250µL protein 

(86µM) solution and covered by plastic sheets to prevent evaporation, incubated at 37°C and 

shaked at 1200 rpm (Heidolph Titramax vibrating platform microplate shaker) with a small 

vibration orbit of 1.5 mm. No cross-contamination between wells was measured. The plates were 

removed at indicated times from the incubator and turbidity measurements (λ=600nm) or free and 

bound ThT fluorescence were performed on a Tecan Infinite M1000 multimode microplate 

reader (TECAN USA, Boston, MA). 

Adsorption of insulin on the plate could also be quantified by QuantiPro™ BCA after 2 

washes of the plate with 200µL of buffer and desorption with 100µL of 5% SDS as described in 

the glass bead assay (see 3.1). 

 

2.3. Material Surface Preparation 

2.3.1. Silanization of glass slides and silicon ATR-FTIR prisms: 

Glass slides used in fluorescence microscopy were treated with Dimethyldichlorosilane 

(DDS, see Table 2.2). Slides were cleaned by rinsing with 0.1% SDS, acetone, ethanol and then 
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H2O. Glass surface was then hydroxylated in oxygen plasma, 12W, 4 minutes. Glass slides were 

then siliconized by an immersion of 2 hours in DDS 5% diluted in toluene with smooth agitation. 

Then, glass slides are washed with toluene, ethanol and water and cured at 100°C for 1 hour.  

ATR-FTIR silicon prism was treated using the same protocol, replacing the DDS by 

phenyldimethylmethoxysilane (PDMMS). While cleaning and handling the silicon prism, some 

solutions should be avoided, particularly acid solutions, because they destroy the covalent 

linkage. 

surface treated silane used chemical structure forbidden solutions 

ATR-FTIR 

Phenyl Dimethyl 

Methoxysilane 

(PDMMS) 

 

Acid conditions 

Microscopy 

glass slides 

Dimethyl 

Dichlorosilane 

(DDS) 

 

  

PEG side of SPR 

prism 

Thiol 

Polyethylenglycol 

 

NaBH4 

C16 side of SPR 

prism 
Hexadecanthiol 

 

NaBH4 

Table 2.2: Chemical structures of the compounds used for surface treatments in this thesis.  

 

2.3.2. Surface treatment of SPRi prisms treatments  

Clean prisms with 0.1% SDS, acetone, ethanol then H2O. If not enough for successfully 

clean the prism, liquid soap can be gently applied on the surface with fingers, handling gloves. 

Do not try to clean gold surface with anything solid. Dry and clean prisms in oxygen plasma, 

12W for 4 minutes.  
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2.3.2.1. PEG side  

In a closed chamber containing water, put a clean glass slide on half of the prism 

gold surface. Prevent it to move adding some liquid mass at its surface. Add ~2µL of 

PEG-SH solution (1 mg.mL-1) under the glass slide. Let the thiol react for ~2 hours. Then 

remove the glass slide, clean the prism with water and dry it. The C16 side can then be 

functionalized. 

2.3.2.2. C16 side 

In a closed chamber containing toluene, add approximately 400µL of C16 diluted at 

1mg.mL-1 in toluene on top of the prism. Let it react for 2 hours. Clean the prism with 

toluene, ethanol and water. Store at 4°C. 

 

2.3.3. Water Contact Angle Analysis 

In order to confirm the efficiency of the material surface treatments, we measured water 

contact angles by the sessile drop method, using a contact angle goniometer. In this method, an 

optical system captures the profile of a pure liquid deposited on a solid substrate. The contact 

angle is defined as the angle made by the intersection of the liquid-solid interface and the liquid-

air interface. It can be alternately described as the angle between the solid sample’s surface and 

the tangent of the droplet’s ovate shape at the edge of the droplet. A high contact angle indicates 

a low solid surface energy or chemical affinity between H2O and the mature surface (see Figure 

2.1). This is also referred to as a low degree of wetting (hydrophobic). A low contact angle 

indicates a high solid surface energy or chemical affinity, and a high degree of wetting 

(hydrophilic). 
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The water contact angle was measured with a drop shape analysis system DSA100 

(Krüss) and was 38° ± 3° and 100° ± 2.5° for the hydrophilic (PEG) and hydrophobic (C16) 

prisms sides, respectively. For DDS treated glass surface, contact angle was 102.1 ± 1.3°. ATR-

FTIR treated with PDMMS, contact angle was 103.1 ± 3.7 °. 

 

2.4. Biochemical methods 

2.4.1. Protein Desorption from material surfaces 

Sodium dodecyl sulfate (SDS) is an anionic surfactant commonly used for protein 

desorption. The molecule (see Figure 2.2) has a tail of 12 carbon atoms, attached to a sulfate 

group, giving the molecule the amphiphilic properties required of a detergent. In most cases, 

SDS-mediated protein removal is assumed to proceed mainly by a displacement mechanism, i.e., 

by SDS adsorption to the surface. The critical micelle concentration (CMC) of SDS in phosphate 

buffer (pH 7.0) at 25°C is 0.0038 M (0.10% (w/w)). We used 5% (w/w) SDS (0.173M), which is 

thus well above its CMC, at 37°C for 30 minutes. 

2.4.2. Determination of protein concentration 

2.4.2.1. Absorbance at 280nm 

The simplest and most direct method to measure pure protein concentration in solution is 

its 280nm absorbance. Indeed, no additional reagents or incubations are required, and no protein 

standard needs to be prepared, provided that the protein sequence is known, since the ε280 can be 

calculated. Amino acids containing aromatic side chains (i.e., tryptophan, tyrosine, and to a lesser 

cosSL LG c SGg g q g+ =

Figure 2.1: A. Sessile drop measuring method and Young equation with the solid-gas, the solid-liquid 
and the liquid-gas interfacial energies denoted as γSG, γSL, γLG, respectively, and the contact angle θC. 
(figure adapted from the Wikimedia Foundation, Inc.). B. Water contact angle on gold surface treated 
with C16. C. Water contact angle on gold surface treated with PEG. 

A 
B C 
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extent cysteine and phenylalanine) exhibit strong UV-light absorption. Consequently, proteins 

and peptides absorb UV-light in proportion to their aromatic amino acid content and total 

concentration. 

The Beer-Lambert law states that the absorbance is directly proportional to the path length 

of the sample ( l ) and its concentration ( c ): 

cOD ´´= l280280 e , thus: 
l´

=
e

280OD
c  

280OD : Absorbance at 280nm 

280e : Molar Extinction Coefficient (M-1.cm-1) 

The molar extinction coefficient is constant for a particular protein, and is wavelength-

dependent. For most proteins, UV-light absorption allows detection of concentrations higher than 

50 µg.mL-1 of protein only. Consequently, we used absorbance at 280nm only for quantitation of 

working solutions while we used colorimetric and/or fluorescent protein assay methods such as 

BCA or QuantiPro BCA for accurate measurements of protein concentrations during aggregation 

assays. OD280 measurements were performed on a Tecan Infinite M1000 multimode microplate 

reader (TECAN USA, Boston, MA). 

2.4.2.2. Bicinchoninic Acid Protein Assay (BCA) and QuantiPro™ BCA 

Assay 

The principle of the BCA assay combines the protein-induced biuret reaction with the 

highly sensitive and selective colorimetric detection of the resulting cuprous cation Cu1+, by 

bicinchoninic acid (BCA). Thus, two steps are involved (see Figure ). First is the biuret reaction, 

whose faint blue color results from the reduction of the cupric ion Cu2+ to the cuprous ion Cu1+. 

Second is the chelation of two molecules of BCA with one cuprous ion, resulting in an intense 

purple color. The BCA/copper complex is water-soluble and exhibits a strong absorbance at 562 

nm, increasing linearly with the protein concentration. 

It has been shown that cysteine/cystine, tryptophan, tyrosine, and the peptide bond are 

able to reduce Cu2+ to Cu1+. Thus, the amount of reduction is a sum of contributions. However, 
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studies performed with di- and tripeptides indicate that the peptide produces more color than the 

sum of each amino acid alone. Therefore, the peptide backbone (and thus the total amount of 

protein) is the major contributor to the reduction of copper in the biuret reaction and color 

development in the BCA assay. Slight protein-to-protein variation in the BCA protein assay 

results from differences among proteins in composition with respect to these three amino acids. 

The binding of BCA to cuprous ion effectively removes the weakly chelated peptides of the 

biuret reaction. Those peptide groups are then free to bind another molecule of cupric ion. 

Therefore, if bicinchoninic acid and copper are present in large excess (as they always are in 

BCA protein assay reagents), the protein assay does not reach an end-point. In addition, the rate 

of BCA color formation is dependent on the incubation time and the temperature. Consequently, 

the key to obtaining accurate results with the BCA assay method is to assay standards and 

unknown samples simultaneously so that they both receive identical incubation time and 

temperature. 

 

Figure 2.2: The principle of the bicinchoninic acid (BCA). (A) Biuret reaction. (B) Chelation of two 

molecules of BCA with one cuprous ion. 

(Figure adapted from Thermo Scientific. Pierce Protein Research Products. Chemistry of Protein Assays 

www.piercenet.com. 2010) 

A. 

B. 

Cu
1+
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One particular benefit is that, unlike other protein assays (e.g., Bradford and Lowry 

assays), the BCA Protein Assay is compatible with samples that contain up to 5 % surfactants 

which allowed us to quantify protein adsorption using a solution 5 % (w/v) SDS solution. In 

addition, the BCA Assay responds more uniformly to different proteins than the Bradford method 

and has a linear concentration range between 50 and 1000 µg.mL-1 of protein. The BCA assay 

was performed as per manufacturer's instructions (Sigma BCA1 Technical Bulletin). 

The QuantiPro™ BCA Assay Kit is based on the same principles as the BCA Kit, except 

that the QuantiPro™ BCA Kit gives a linear response from 0.5 to 50 µg.mL
-1 of protein. Since 

the QuantiPro™ BCA assay can detect low concentrations of protein in small volumes of 

solution, it is especially adapted to the quantification of protein adsorption. The QuantiPro BCA 

assay was performed as per manufacturer's instructions (Sigma QPBCA Technical Bulletin). At 

the end of the color development of BCA or QPBCA assays, the absorbance at 562nm was read 

on a Tecan Infinite M1000 multimode microplate reader (TECAN USA, Boston, MA). 

 

2.5. Biophysical methods 

2.5.1. SPRi experiments: 

Surface Plasmon Resonance imaging (SPRi) was used to monitor the mass adsorption on 

analyzed surfaces. SPRi is a useful real-time tool sensitive to local changes in refractive index on 

the first 100 nanometers of a metal surface, usually a gold layer. At a certain angle, called critical 

angle of resonance, a metal layer does not reflect light as the electric and magnetic fields of the 

light are in resonance with an electron wave forming in the metal layer. This critical angle of 

resonance is decreased when the refractive index on the first nanometers of the surface is 

increased. As an accumulation of proteins on the surface will locally increase the refractive 

index, the reflectivity of the gold layer will be increased. This reflectivity change of the gold 

layer is monitored in real-time, revealing material adsorption as small as tens of picograms per 

millimeter square on the gold surface. Here, a protocol was developed to obtain a gold layer 

treated with PEG-thiol, a hydrophilic compound, and alkyl (C16)-thiol, a hydrophobic 

compound. So, SPRi recording could be simultaneously obtained on both hydrophilic and 

hydrophobic surfaces.  
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Starting SPRi experiments, some 2% SDS or 1mM HCl injections must be done until signal 

stabilization. Regeneration can be done using 2% SDS, 5% SDS or 1mM HCl. 

2.5.2. FTIR experiments 

Protein structures are possibly modified during aggregation and, in proteins, atoms 

covalent bounds vibrations are affected by the protein structure. Vibrations changes can thus be 

detected through infrared spectroscopy. Consequently, Fourier Transformed Infra-Red 

spectroscopy (FTIR) was used to study the structures of insulin in soluble or aggregated states. 

Insulin structures during insulin interaction and accumulation on hydrophobic surfaces were 

obtained using a silicon prism in Total Attenuated Reflectance FTIR (ATR-FTIR). The prism 

was treated with phenyldimethylmethoxysilane (PDMMS), to obtain a hydrophobic surface in 

contact with the studied solutions. 

2.5.3. Microscopy experiments 

A flow chamber was built on a DDS-coated glass coverslip using a Glycotech flow 

chamber (channel width = 2.5 mm, channel thickness = 0.127 mm). A 20 µL.min-1 flow rate was 

applied by a syringe pump. When indicated, thioflavin T was added to buffer and protein 

solutions at a 20µM final concentration. The surface fluorescence was observed by a 63x 

objective (N.A. = 1.4) on an IX-71 Olympus microscope fitted with a DAPI fluorescence cube 

(λex = 435 ± 10 nm, λem = 485 ± 25 nm) and connected to an Olympus DP30BW camera. The 

image of the field stop was used to ensure proper focusing on the glass surface. Fluorescence 

images of the surface were recorded at the indicated times. To avoid photobleaching, each image 

was recorded at a different position, using a motorized stage. Using the ImageProPlus software, 

the average fluorescence intensity was calculated on the image of the field stop and the value of 

the dark background was subtracted. 

 

2.6. Insulin aggregation kinetics 

At regular time intervals, insulin ThT fluorescence was measured. ThT fluorescence 

values were then plotted against time (see Figure). Growth rate value was then measured as the 

slope of the linear ThT fluorescence increase of the growth phase. Lag time was further defined 
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as the intersection of the growth phase linear prolongation and the ThT fluorescence level at time 

0 (see Figure 2.3). 

Figure 2.3: Typical kinetics of insulin aggregation: Lag phase, growth phase and plateau (steady state).   
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3.1. Aim of the study 

In literature, it can be seen that 2 major ways exist studying insulin aggregation. One 

involved insulin aggregation at pH 2 and high temperature, usually 60 °C 
48,49,54,93

. In these 

conditions, insulin aggregates in few minutes, but because of Arrhenius law, aggregation time 

highly depends on the temperature. However, in these conditions (low pH, high temperature) 

insulin aggregation appears to be surface independent. Since, these conditions are far from the 

conservation conditions of therapeutic insulin solutions, the second one consists in studying 

insulin aggregation at neutral pH and physiological temperature (37 °C), under agitation 
40,85,88,89

. 

These studies demonstrated that insulin aggregation is enhanced by surfaces, particularly 

hydrophobic surfaces. Consequently, insulin aggregation appears to be able to take place in 

solution, or on surfaces. In both cases, the final insulin state is identical, characterized by large 

(up to 1µm) amyloid fibers in solution. Moreover, insulin aggregation kinetic appears to be 

similar, with a nucleation phase preceding a growth phase. Thus, the 2 insulin aggregation 

mechanisms (in solution or on surfaces) are involved in kinetic competition, and systematic 

studies of insulin aggregation in function of temperature and surfaces was not available to 

determine the relative importance in given conditions of these competing mechanism. 

Nevertheless, it must be noted that amyloid fibrils are not the only possible insulin aggregate 

state. For instance, I proved in my studies that, at pH near insulin isoelectric point (4.5), insulin 

spontaneously form amorphous aggregates in few seconds, which are negative to ThT staining 

and can be disassembled by changing the pH away from the pI (see Fig. 7 of the article). 

In order to study the competition between the 2 insulin amyloid aggregation mechanisms, 

the first part of my thesis was to study the effect of temperature and agitation on human insulin 

aggregation kinetics in homogeneous phase (insulin aggregation in solution) and heterogeneous 

phase (insulin aggregation induced by surfaces) at different temperature, pH and agitation rates. 

This was possible thanks to the use of microwells plates. Indeed, commercial microplates can be 

found that are hydrophobic or highly hydrophilic with protein very low binding properties, 

through a PEG-coating of the wells. In hydrophobic plastic plates, insulin can aggregate in 

heterogeneous phase, whereas in the hydrophilic PEG-coated plates, insulin only aggregates in 

homogeneous phase. This work is directly related to previous work by Sluzky and Ballet on 

insulin aggregation on hydrophobic surfaces exposed in Sluzky et al.
40,85

 and Ballet et al. 
88

. In 

Ballet study, human insulin was demonstrated to adsorb on hydrophobic surfaces and different 
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chaperones were able to recognize that adsorbed insulin. It was concluded that adsorbed insulin 

should be partially unfolded, exposing hydrophobic segments that can be recognized by the 

chaperones. That insulin partial unfolding on hydrophobic surfaces is consistent with surface-

induced insulin aggregation model proposed by Sluzky et al.
40,85

 In that model, it is proposed that 

hydrophobic surfaces induce a faster aggregation of insulin monomers through (i) partial 

denaturation of the protein on the surface, (ii) desorption of the unfolded insulin monomer, and 

(iii) nucleus formation and fibril growth in the solution. Nevertheless, in Ballet’s study 
88

, 

unfolded insulin remained adsorbed on the surface strongly enough to be detectable by BCA and 

chaperone binding after buffer washes. This shows that partially unfolded insulin monomers 

accumulate on the surface. Moreover, hydrophobic surface incubated with insulin solution 

appears to be able to seed insulin aggregation of a new solution. At the contrary, insulin solution 

incubated with hydrophobic surface shows similar aggregation kinetic if transferred on a fresh 

hydrophobic surface. These results prove that insulin unfolded monomers associate on the 

hydrophobic surface instead of in solution. Consequently, insulin fibrils nuclei formation and at 

least a part of fibril growth happen on the surface itself. In this second article, this hypothesis is 

formally proved, through insulin aggregation kinetics monitoring in respect of the surface 

chemistry. My contribution to this work has been to analyze and explain the observed influence 

of agitation, pH and temperature.  

3.2. Effect of temperature on insulin aggregation: activation energy of insulin aggregation 

In order to get a quantitative estimation of the energy change involved in the nucleus 

formation and the fibril growth mechanism, insulin aggregation experiments has been done at 

different temperature. Indeed, these two processes require the conformational change of insulin 

monomers, as shown by InfraRed spectroscopic signature of the soluble and aggregated insulin 

states. Arrhenius law relates the molar reaction rate (k) to the molar activation energy (Ea) by the 

relationship: k = k0 · exp (-Ea/RT), where k0 is a constant. Ea is the energy of the transition state 

with respect to the initial state energy. The Arrhenius equation gives a linear relation between the 

logarithmic nucleation rate and the inverse of temperature (1/T). The nucleus formation is 

characterized by the nucleation rate (= 1 / lag time assuming that the lag time is the characteristic 

nucleation time). Similarly, the growth rate is characterized by the slope of the aggregation phase 

divided by the plateau value (see Figure 1.1). As a result, two activation energies will be 
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obtained, one for the nucleation and one for fibril growth and release. Here, the activation energy 

is the slope of the linear relation obtained. It must be noticed that the Arrhenius law is acceptable 

only for activation energies that are not changing with the temperature, which implies small 

temperature amplitudes. This is consistent with the temperature range (from 12 to 60°C) studied 

here.  

Consequently, I calculated the lag-time and the growth rate variations (see Fig. 2.3 in 

previous chapter) with the temperature, in the presence of hydrophilic and hydrophobic surfaces. 

In the presence of hydrophobic surface, the nucleation activation energy is decreased compared 

to the presence of hydrophilic surface. Moreover, on hydrophobic surface, the nucleation 

activation energy is smaller than the activation energy for fibril growth. These data shows that 

hydrophobic surfaces act as a catalyst for nucleus formation. But no significant difference has 

been found between the activation energy of fibril growth on hydrophobic and hydrophilic 

surface. So, fibril growth rate seems to be a surface independent mechanism, and insulin 

aggregation is controlled by the nucleation rate. 

This nucleation controlled aggregation kinetic implies that according to Arrhenius 

equation, the activation energies can be used to evaluate the kinetic constants of the two 

mechanisms and their evolution with temperature. Comparing these two constants relative at a 

given temperature allows evaluating the part of insulin aggregation that happens in homogeneous 

or heterogeneous phases (See Figure 3.1). 
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Figure 3.1: Relative contribution of heterogeneous (dotted line) and homogeneous (full line) nucleation 
mechanisms in human insulin nucleation for an insulin solution (86 µM, pH 7.3) incubated in a 
hydrophobic polystyrene microwell plate. Calculated by the comparison of heterogeneous phase 
nucleation constant (ksurface) and homogeneous phase nucleation constant (ksolution). 

 This figure shows that, when temperature raises, the quantity of unfolded protein 

increases and therefore the driving force for precipitate increases favorable to homogeneous 

aggregation. According to our results, at 37°C, 90% of the nucleation is done on the surface. At 

this temperature, insulin aggregation is governed by heterogeneous phase, which explains that no 

aggregation is observed at this temperature for 24 hours of insulin incubation on hydrophilic 

surfaces. At 50°C, 25 % of the aggregation is governed by homogeneous phase, and aggregation 

of insulin solution starts to be detectable for 24 hours of insulin incubation on hydrophilic 

surfaces. At 67°C, aggregation is equally governed by homogeneous and heterogeneous phases. 

3.3. Effect of pH on insulin aggregation 

The pH effect on insulin aggregation was also studied. Infrared Spectroscopy shows that 

insulin aggregates structures at pH 2 and pH 7 shows high β-sheet content compared to soluble 

insulin. It shows that insulin aggregates at these two pHs are amyloid fibrils, which is also 

confirmed by ThT fluorescence. Indeed, insulin aggregates formed at pH 2 or pH 7 seems to be 

similar, but with higher β-sheet amounts in pH 2 insulin aggregates (see Fig. 4F in following 

article). Nevertheless, at pH 2 soluble insulin conformation is similar to soluble insulin at pH 7. 

Moreover, at room temperature, insulin stability in hydrophilic plates at pH 2 and pH 7 are 

comparable. Consequently, acidic pH does not induce fast insulin amyloid fibers formation. We 
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also noticed that for temperatures higher than 46 °C insulin aggregation in homogeneous phase is 

favored at both pHs 2 and 7. Moreover, for both pHs, the presence of hydrophobic surfaces 

catalyze insulin aggregation. Consequently, our results show that insulin aggregation mechanisms 

are similar at pH 2 and pH 7. In both cases, material surface and temperature induces insulin 

aggregation, leading to formation of insulin amyloid fibrils on the surfaces (for temperature < 

44°C) or in solution (temperature > 48°C). 

I further observed that at a pH close to pI (pH = 4.5), an insulin aggregation appears in few 

seconds. Nevertheless, these aggregates show almost no ThT fluorescence, and FTIR confirms 

the absence of any structural modifications. The aggregate formation is due to the disappearance 

of protein/protein electrostatic repulsion at the isoelectric pH. 

3.4. Multiples roles of agitation during insulin aggregation 

As explained in the article, at neutral pH and 37°C nuclei formation and fibril growth take 

place on the hydrophobic surface and not in solution. Nevertheless, it has been reported in the 

literature 
40

 that agitation of the insulin solution is a key determinant of aggregation, as an 

unstinted insulin solution contained in a hydrophobic container is stable for months (BD private 

communication). It is easily understandable that increases the rate of insulin molecules collisions, 

so that the aggregates can be formed more rapidly. This explains why insulin aggregation is 

highly reduced in the absence of shaking, since in this case only diffusion allows soluble insulin 

to encounter the surface or the growing fibrils. The initial adsorption of insulin with the surface 

leads to a local insulin concentration decrease at the vicinity of the surface. Nevertheless, as soon 

as enough agitation is provided for the solution to be maintained homogeneous, the effect of 

agitation on insulin aggregation kinetic should be highly reduced and hardly detectable. But this 

is not what is observed. My contribution has been to explain that high agitation effect on insulin 

aggregation kinetic. 

I first varied the agitation rate of the samples and measured the obtained variations in the 

lag-time observed before the apparition of detectable fibrils in solution. Then, I measured the 

variations obtained on the rate of aggregate formation in solution after the nucleation. 

Aggregation formation was monitored using Thioflavin T (ThT) fluorescence and/or optical 

density measurements. Under a certain agitation (600 rpm), no insulin aggregation was 
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measurable. This was due to the absence of efficient solution mixing at that rotation speed in our 

experimental setup. For agitation speed between 600 rpm and 900rpm, the lag time decreased, as 

the solution mixing becomes more efficient and insulin fibrils formation becomes detectable after 

a few hours. This is consistent with diffusion being the limiting parameter, explaining why 

agitation accelerates the insulin aggregation. Surprisingly, the lag-time increased again with the 

rotation speed for agitation speeds higher to 900 rpm. These observations show that once the 

solution mixing has became efficient, the agitation is also an inhibiting factor of aggregation 

nucleus formation on the surfaces. To explain that phenomena, it must be noticed that increasing 

the mixing of the solution does not only increases the homogeneity of the solution but it also 

increases the mechanical shear stress at the surface, where the aggregates form. In the article, 

Thomas Ballet shows in Figure 2.B that the nuclei structures on the surface are fragile structures 

that can be removed by several buffer washes. We proposed that the increase of agitation induces 

an increase of the wall shear stress that breaks the forming nuclei on the surface. It is confirmed 

by the lag time linear increase with the calculated hydrodynamic wall shear stress. 

After the lag phase, the aggregates become detectable in solution, and aggregate 

concentration increased linearly with time (growth phase). This linear increase allows calculating 

the fibril formation rate in the solution, also called fibril growth rate. As observed in literature, 

increasing the agitation rate induces a high increase of the fibril growth rate. As less than 900 

rpm mixing is inefficient to produce aggregation nuclei on the surface, we first obtained nuclei at 

1200 rpm, then studied fibril growth rate by reducing the agitation speed to the wanted value. I 

observed that the fibril growth rate increases linearly with the calculated average hydrodynamic 

wall shear stress (k(ω) = A · ω
3/2

). As Thomas Ballet shows that the fibril growth only happen on 

the surfaces, we proposed that the fibril accumulation in the solution is a shear stress-dependant 

mechanism: aggregates nuclei are formed and fibrils growth on the surface, but as soon as a fibril 

becomes long enough, shear stress breaks its attach to the surface. That liberates space on the 

surface which is further used as a new fibril growth site. 

Consequently, agitation has three important and antagonist effects on surface dependant 

aggregation: (i) it homogenizes the solution, facilitating the molecular collisions; (ii) it detaches 

the fibrils from the surface, inducing the apparition of fibril accumulation in the solution and 

allowing the formation of new fibrils on the liberated free surface. But (iii) it breaks the 
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nucleation centers on the surface, increasing the stability of the solution. The two first parameters 

increase the aggregation rate, the last one decreases the aggregation rate. 

This indicates that the fibrils growth from the nuclei on the surface and are then released in 

solution when they become large enough to be sensitive to the wall shear stress. Consequently, 

our data show that nucleus formation and fibril growth both takes place on the surface. 
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We investigated the impact of surface hydrophobicity on the adsorption and aggregation of 

human insulin. Our study shows that, under specific formulation conditions, hydrophobic surfaces 

can induce strong insulin adsorption, a conformational change leading to thioflavin T-positive 

staining and the release of amyloid-like aggregates from the surface. In contrast, insulin adsorbs 

very weakly and does not aggregate on plain glass or PEG-coated hydrophilic surfaces. The kinetics 

of insulin aggregation progresses in two phases. First, a lag-phase during which pre-fibrillar 

aggregates form on the material surface. These material-borne intermediates act as seeds and are 

essential for the subsequent formation of amyloid fibers. Second, a growth phase, during which 

amyloid fibers are progressively released in the bulk solution. We show that the initiation of HI 

amyloidal aggregate formation requires lower activation energy in the presence of hydrophobic 

surfaces than in the presence of hydrophilic ones, but that the ongoing growth of the aggregates is 

material-independent. These results show that HI is able to form prefibrillar aggregates on 

hydrophobic surfaces, which act as seed for the growth of large micron-sized amyloid fibers. 

Material surfaces can therefore assist protein unfolding leading to aggregate formation.  
 

INTRODUCTION 

 
Protein adsorption on material surfaces is a widespread phenomenon with multiple and sometimes 

unwanted consequences in biology, pharmacy and medicine. The extracellular matrix, a well-defined 
protein network that conveys mechanical support as well as growth and differentiation signals to 
eukaryotic cells, naturally mediates their adherence to materials. In biotechnology, recombinant protein 
stability can be affected by the nature of the container used to store it 1, 2. In medicine, implantable 
materials often trigger an inflammatory response driven by the adsorption and reaction of the complement 
with their surface 3. Blood-contacting materials provide another example where the binding and activation 
of specific proteins may trigger blood clotting 4.  

The mechanisms that drive protein adsorption on materials are governed by a complex combination 
of physico-chemical characteristics of the protein and the material, as well as the solution environment. 
The size, charge, hydrophobicity and conformational stability are specific to each protein and influence its 
propensity to adsorb and stay bound to a given material. In an aqueous environment enhanced protein 
adsorption and conformational change are mostly observed on hydrophobic surfaces because of the 
entropy increase resulting from both the dehydration of a hydrophobic protein domain and the release of 
water from a hydrophobic surface upon binding. On the material site, not only its hydrophobicity and 
charge but also its topography influences the interaction with a given protein. Temperature and agitation 
are important parameters governing the collision rate between the protein molecules in solution and with 
the material. Moreover thermal and mechanical energy also affect protein tertiary structure. With 
increasing temperature long-range interactions are weakened and the overall protein structure becomes 
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more flexible and therefore more likely to adsorb on a material surface. Finally the pH of the solution 
determines the type and distribution of surface charges and therefore affects protein conformation and 
protein-material interaction via electrostatic forces. 

Protein adsorption can be measured either biochemically after desorption or in situ by sensitive 
biophysical methods like IR spectroscopy or fluorescence using conformation-sensitive dyes. These 
techniques are sensitive to both the amount of protein and to their folding state while AFM allows to 
image the protein layers adsorbed on a material. 

We chose human insulin (HI) as a model because its aggregation has been studied in different 
physico-chemical conditions 5-7. It has been known for a long time that HI forms inactive aggregates at 
elevated temperature and acidic pH and since the discovery of amyloid fibers in the 1960s, it is known that 
these HI aggregates exhibit the properties of amyloid fibers. More recently, studies by Brange et al 7 have 
shown that HI forms fibrils within 2 hours at acidic pH and 55°C whereas fibrillation only starts after 2 
days at acidic pH and 37°C. Besides acidic pH and elevated temperature, insulin aggregation has also been 
studied under agitation in the presence of hydrophobic materials. Sluzky and coworkers 6 have shown that 
insulin undoubtedly changes its conformation upon binding to hydrophobic surfaces at pH 7 and 37°C. 
From a concentration-dependence study, they deduced that the HI monomer was the molecular species 
leading to aggregation. They hypothesized that HI changes its conformation upon binding to hydrophobic 
surfaces and that the released, unfolded HI monomer forms aggregates in solution 6. In this article, we 
show that HI aggregation in fact proceeds exclusively on the material surface, once the latter is covered 
with adsorbed HI. This holds true at acidic and neutral pH and is dependent on agitation and the presence 
of a hydrophobic material surface. The properties of the material surface therefore act as a catalyst that 
triggers a propagative conformational change in the protein. 

 
 

EXPERIMENTAL PROCEDURES 

 
If not otherwise stated, all chemicals were purchased from Sigma-Aldrich. Experiments were conducted in 
PBS (10mM phosphate, pH 7.4, 154mM NaCl) or TBS (25mM TRIS-HCl, pH 7.4, 125mM NaCl). HI 
(recombinant, expressed in yeast) solutions were prepared at 0.5 mg/mL (86 µM), a concentration suitable 
for protein quantification. Moreover previous work by Sluzky et al. 5 showed that HI, at this 
concentration, readily adsorbs and aggregates upon contact with hydrophobic surfaces. All solutions were 
filtered (0.22µm) before use. 
 

Glass bead surface treatments—Acid-washed borosilicate glass beads (diameter 1mm) were siliconized by 
immersing in SurfaSil® (Pierce) 10% (w/w) in acetone and stabilized by curing at 100°C for 1h. The water 
contact angle was measured (DSA100 Krüss) and was <15° and 93.5° (± 3.5°) for plain and Surfasil®-
treated surfaces, respectively. 
 

Insulin aggregation assays—HI aggregation assays were conducted on two types of model surfaces, glass 
beads or plastic 96-well microplates. All reactions were performed with 3 (glass beads) or 8 (microplate) 
replicates. 
 
Glass Bead Assay—A 6 x 29 mm borosilicate glass tube was filled with 200mg of unmodified or 
siliconized glass beads (6 cm2 area) and 325µL HI in PBS, sealed with Parafilm, and incubated at 37°C 
with agitation (PTR-60 Grant 60 rpm end-on-end rotation). At each time point, the solution was separated 
from beads. Part of the solution was filtered to remove aggregated HI (100 nm cut-off). The beads were 
washed 3 times with 500µL PBS. The adsorbed HI fraction was desorbed with 100µL of 5% SDS for 1h 
agitation at 37°C. Negligible protein material remained on the bead surface thereafter. The total amount of 
HI in solution (non-filtered), of soluble HI and of HI adsorbed to the beads was determined using the 
Bicinchoninic Acid Assay 8-11. In addition, non-filtered solutions were used for turbidity (λ=600nm) or 

Thioflavin T (ThT, 20 or 50 µM) fluorescence measurements. Free and bound forms of ThT were 
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measured at λex=342nm, λem=430nm and λex=450nm, λem=482nm, respectively 12, with a 5 nm excitation 
and emission slit (Tecan Infinite M1000). For seeding experiments, an HI aggregation assay was 
performed for the indicated time. At the end of the pre-incubation, beads and the solution were separated. 
The “pre-incubated” beads were washed and incubated with a fresh HI solution. The “pre-incubated” 

solution was directly incubated with fresh plain borosilicate beads. Seeding with aggregates was 
performed by adding “pre-formed” aggregates (10% (w/w)) from a overnight incubated solution to a fresh 

HI solution and plain beads. The results are the average and standard deviation of 3 samples. They are 
representative of several independent experiments. Lines are hand-drawn and provided as a guide for the 
eye. 
 
96-well microplate assay—Polystyrene (Greiner Bio-One, contact angle = 85° ± 4.7), or PEO-coated, 
(Corning, contact angle = 3.5° ± 5.8) microplates were used. In fluorescence assays, black polystyrene 
microplates were used  (Nunc Nunclon® Δ Surface). The plates were covered by plastic sheets, incubated 

at 37°C and shaken at 1200 rpm (Heidolph Titramax, 1.5 mm vibration orbit). This setup allows to obtain 
similar aggregation kinetics when compared to the bead assay. Indeed the hydrophobic surface area of an 
individual well is smaller than that of the beads (2 cm2 and 6 cm2, respectively). This decrease is 
compensated for by agitation at 1200 rpm so as to favour protein-material contact. At the indicated times, 
turbidity or free and bound ThT fluorescence were measured. Quantification of soluble HI was conducted 
after filtration using Millipore 0.22µm MultiScreen™. Adsorption of HI on the plate was quantified by 
BCA assay after 2 washes and desorption with 5% SDS. ThT staining of the adsorbed proteins was done 
after 2 washes. Seeding experiments were performed as previously described with glass beads. The results 
are the average and standard deviation of 8 samples. They are representative of several independent 
experiments. Lines are hand-drawn and provided as a guide for the eye. 
 
Kinetic analysis—The aggregation kinetics proceeded in three phases: a lag phase, where the signal was 
not statistically different from the baseline (mean ± standard deviation), a linear growth phase and a 
plateau phase. Experimentally, the lag time was defined by the intercept between the linear growth phase 
and the baseline. The lag-time is variable between 2 and 4 hours according to the experimental set-up. The 
nucleation rate (h-1) is defined as the inverse of the lag time. The slope of the aggregate growth was 
defined as the slope of the linear phase and the plateau as the maximum value attained. Growth slopes 
were normalized to the maximum value to the signal to define the growth rate (h-1). These parameters 
were calculated on individual kinetics corresponding to different samples, and the given statistics 
represent the average and the standard deviation for each parameter. 
In order to determine activation energies, HI solutions were incubated in hydrophobic multi-well plates at 
different temperatures, with agitation (1200 rpm). HI aggregation was monitored by ThT fluorescence or 
turbidity. The nucleation and aggregation growth rate were determined as explained above and fitted to 
the following equation k(T) = k0 exp(-Ea/RT) to calculate activation energies. 
 
Dynamic Light Scattering (DLS) / Micro-Flow Imaging (MFI™)—In order to estimate the size of the 
aggregates formed during the experiment, insulin aggregation was monitored by Dynamic Light Scattering 
(DLS : Wyatt Dynapro Plate Reader Plus) and Micro-Flow Imaging (MFI™ : DPA4200 Series A, 
Brightwell Technologies). These experiments were conducted in the microplate assay format. At each 
time point, solutions were removed from the incubation and assayed for particles size and quantity using 
those two instruments. DLS analysis of filtrated samples (100 nm cut-off) showed that in the 1-100 nm 
range, a single 2.7 nm peak was present, corresponding HI monomers, dimers and hexamers, but no 
aggregates of sizes up to 100 nm were present during the whole aggregation process (data not shown). 
Using MFI™, increasing amounts of particles were observed during the growth phase (2-3µm average 
size). 
 
Insulin aggregation at different pH—Aggregation and seeding experiments performed in acidic conditions 
(50 mM Glycine-HCl, pH 2) were conducted in microplates. Aggregation was monitored by turbidity or 
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fluorescence. Seeds were obtained either using a 0.5mg/mL HI solution in TRIS-HCl, pH 1.6, 125 mM 
NaCl, incubated at 60°C without agitation or using a 0.5mg/mL HI solution in TBS, incubated in contact 
with hydrophobic surfaces. Both types of seeds were added at a 5% (w/w) ratio to a fresh 0.5 mg/mL HI 
solution (TRIS-HCl, pH 1.6, 125 mM NaCl), in a new microplate and incubated at 60°C without agitation. 
Aggregation kinetics studied at different pH were performed in various buffer solutions, at a constant 100 
mM ionic strength.  
FTIR experiments— The FTIR instrument used is a Brucker Vertex 70 and the software is OPUS. The 
liquid cell was a CaF2 cell from Perkin Elmer Instruments. HI solutions were prepared in D2O (from 
Sigma-Aldrich) at 86µM in PBS (0.01 M phosphate buffer, 0.0027 M KCl and 0.137 M NaCl). The pD 
was adjusted to 6.89, 2.09 or 5 using a pH-meter, which corresponds to pH 7.3, 2.5 or 5.41 respectively, in 
H2O. Aggregated HI solutions were prepared in 96 well plates as described above. Using the OPUS 
software, compensation was applied to filter H2O and CO2 contributions to the spectra. Smoothing was 
done using the Savitzky-Golay equation. Baselines were flattened using a linear correction. Spectral 
decomposition of the amide I band (1600-1700 cm-1) was done using the second derivative of the spectra 
to find peak positions. Then, using the Levenberg-Marquardt algorithm, 2 to 3 peaks were fitted to the 
experimental data (residual relative error less than 0.8%). 

 
RESULTS 

 
Insulin aggregates in the presence of insulin adsorbed on hydrophobic surfaces 

 

Identical HI solutions were incubated in hydrophilic borosilicate glass tubes containing small glass 
beads (6 cm2 surface area), that were either plain and hydrophilic or modified by SurfaSil®, which renders 
them hydrophobic. After different times at 37°C under agitation, the amount of HI adsorbed on the bead 
surface and the amounts of HI present in the fluid phase in soluble or aggregated form were quantitatively 
analyzed as explained in Materials and Methods (Fig 1A). In the presence of hydrophobic beads, the 
amount of soluble HI in the fluid phase remained constant for about 2 hrs (lag phase) after which it started 
to decrease sharply (growth phase) until only trace amounts of soluble HI were left (plateau phase). The 
amount of aggregated HI in the fluid phase increased symmetrically, starting at about 2 hrs and reaching a 
maximum after 4 hrs. In contrast, in the presence of hydrophilic beads, HI did not aggregate even after 
several days. Concerning HI adsorption on hydrophobic glass beads (Fig.1A), we observed a slow but 
significant increase of adsorbed HI during the lag phase. After 3.5 hrs, a maximum amount of about 40 µg 
of HI was adsorbed, followed by a decrease of adsorbed HI to about 20 µg during the plateau phase. In 
contrast, the amount of adsorbed protein on hydrophilic glass beads remained at the detection limit (less 
than 1µg) during all the incubation.  

 
Seeding experiments were performed to study whether aggregation took place in the bulk solution or 

at the material surface. A HI solution was pre-incubated at 37°C and pH 7.4 for 2 hrs in the presence of 
hydrophobic beads then the fluid phase was separated from the beads, which were washed three times 
with buffer to remove the interstitial liquid. When this pre-incubated HI solution was put in contact with 
fresh borosilicate beads (Fig 1B), no aggregation was observed, showing that the fluid phase carried no 
‘aggregation center’. In contrast, pre-incubated beads induced the aggregation of a fresh HI solution after 
a reduced 1-hr lag phase. Large amounts of HI adsorbed rapidly (up to 60 µg) when the pre-incubated 
beads were put in the fresh HI solution, then it decreased to about 20 µg (Fig 1B). After a longer pre-
incubation time (12 hrs), HI aggregation started immediately on hydrophobic surfaces (data not shown). 
HI aggregation therefore takes place on hydrophobic surfaces, where HI is already adsorbed. To confirm 
this point, 5 % (w/w) of insulin aggregates recovered from a fully aggregated solution were added to a 
fresh HI solution and incubated at 37°C in the presence of hydrophilic beads under agitation. No 
aggregation occurred under these conditions, showing that HI aggregation takes place on hydrophobic 
surfaces, and not in solution, at pH7 and 37°C.  
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In order to increase the statistics of the data and to screen more rapidly different experimental 
conditions, a 96-well plate assay was developed for HI aggregation assays. The amount of soluble, 
aggregated and adsorbed HI was quantified in eight microwells in parallel. HI aggregation could also be 
monitored by turbidity changes 13, 14 or using thioflavin T (ThT), a dye specific for the formation of 
extensive intermolecular b-sheets 15. The protein concentration and the temperature were identical to the 
bead assay, but the agitation conditions were quite different, in order to obtain comparable aggregation 
kinetics. The effect of agitation will be studied below.  As for the glass bead assay, HI typically started to 
aggregate after 2h and was fully aggregated after 8 hrs in hydrophobic microplates, whereas it was stable 
for days in hydrophilic microplates (Fig. 2A). The kinetics of HI adsorption onto hydrophobic plastic 
microwell plates were also quantitatively very similar to those obtained on hydrophobic borosilicate 
beads. No protein adsorption could be detected on hydrophilic multiwell plates. Seeding experiments also 
confirmed the results obtained with glass beads. A hydrophobic surface pre-incubated with HI triggered 
aggregation of a fresh HI solution more rapidly than a hydrophobic surface, which had never been 
exposed to HI. Increasing the pre-incubation period resulted in a parallel decrease of the aggregation lag 
time (Fig 2B). Interestingly, when the pre-incubated hydrophobic surface was washed, the lag time was 
less decreased, showing that the washing partially removed ‘aggregation centers’ from the plastic surface.  

Dynamic Light Scattering (DLS) and Micro-Flow Imaging (MFI™) experiments were conducted to 
estimate the size of the aggregates formed along the aggregation process and present in the fluid phase 
(Fig. 3). DLS analysis of the filtrated solution (100 nm cut-off) showed that, during both the lag and 
growth phase, a single peak was present, at about 2.7 nm (30-35 kDa), corresponding to the expected 
signature of a mixture of HI monomers, dimers and hexamers (Fig. 3A). Interestingly, during the growth 
phase, DLS analysis revealed the very same single peak, which demonstrated that no aggregate of 
intermediate size comprised between 2.7 and 100 nm was present in solution during the whole aggregation 
process. DLS analysis of non-filtrated samples was impracticable after the lag time, showing the presence 
of aggregates larger than 100 nm in the fluid phase. Using MFI™, no particle could be detected during the 
lag phase, but increasing amounts of particles comprised between 1 and 10 µm (2-3µm on average) were 
observed during the growth phase, that closely paralleled the amount of aggregated HI (Fig. 3C). The size 
distribution of these particles slightly increased during the aggregation process (Fig. 3B). At the onset of 
aggregation (t = 135 min), more than 50% of the particles had a size comprised between 1 and 1.25 µm, 
and almost no particle was larger than 2.5 µm. At t = 180 min, 45% of the particles had that size, while the 
remaining 55% had a size comprised between 1.25 and 2.5 µm. At later times (t = 225 or 255 min), 70% 
of the particles had a size lower than 3µm, and the remaining ones had a size comprised between 3 and 10 
µm. Altogether, these results show that HI aggregates contained in the fluid phase range between 0.1 and 
10 µm.  

FTIR spectra were recorded of the initial HI solutions and of HI aggregates in the supernatant at the 
end of the aggregation process at pH2 and pH7 (Fig. 4A-D). The spectra obtained from soluble HI at pH2 
and 7 are very similar, with a dominant a-helical component (1650-1656 cm-1) (80 % of the total 
absorbance) and minor b-sheet (1626-1636 cm-1) and b-sheet/b-turn (1672-1677 cm-1) contributions. 
When aggregated in the presence of hydrophobic surfaces, HI contains less a-helical structure and this is 
especially prominent at pH2. Indeed, the a-helical component contributes 10% to the overall absorbance 
in aggregated HI at pH2 whereas at pH7 it contributes about 50%. On the other hand, the b-sheet 
contribution becomes dominant in aggregated HI, indicating that a-helical structures of soluble HI are 
converted into extensive b-sheet structures after aggregation (compare Fig.4 A and C, B and D). This a-
helical to b-sheet conversion has also been observed by Bouchard and colleagues when heating bovine 
insulin to 70°C at pH 2.3 16. These data support the idea that hydrophobic surfaces trigger an a-helix to b-
sheet transition in HI upon adsorption and this holds true at neutral and acidic pH. 

AFM observations of the surface of washed and dried hydrophobic beads after incubation with HI for 
different times revealed that the surface roughness of the material dramatically increased during the 
incubation, up to 100 nm (Fig. 5). The presence of many 20 nm large filamentous structures with a 
dendritic morphology was noticeable, especially at the end of the lag time (1.5 hrs). During the 
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aggregation phase, aggregates had a more spherical morphology. At the end of the aggregation process, 
the surface still contained large aggregates (about 50 nm diameter), separated by large flat surfaces, that 
could correspond to precursors of HI aggregates remaining on the surface. These structures were absent on 
the surface of hydrophilic beads incubated with HI solutions (data not shown). Hydrophobic surfaces are 
therefore covered with prefibrillar protein aggregates, which are later released in solution.  
 

Altogether, these AFM observations, the decreased lag time exhibited by HI-covered hydrophobic 
beads, the decrease in the amount of adsorbed insulin observed after the growth phase and the fact that 
only aggregates larger than 100 nm are present in the fluid phase suggest that the aggregates form on the 
surface up to a quasi-micron size, and are later released in the fluid phase. Since, at the end of the 
aggregation kinetics, no more soluble insulin is present in the fluid phase, new aggregates cannot form on 
the surface, whereas the shear stress induced by shaking can possibly detach already formed micron-sized 
aggregates. To confirm this sequence of events, we studied the effect of agitation speed on aggregation 
kinetics. Below 600 rpm, no aggregation occurred because the fluid phase is not mixed and accompanies 
the movement of the well as a solid (grey zones in Fig. 6). This was supported by the following 
experiment. A water layer was carefully deposited on top of a slightly denser sucrose solution containing 
bromophenol blue. After 10 min rotation at different speeds below 600 rpm, no mixing was observed 
whereas the solution became homogenous above 600 rpm. Interestingly, once aggregation had started, the 
agitation speed could be reduced down to 100 rpm (Fig. 6 A). It is likely that the surface roughness due to 
HI massive adsorption on the plastic surface (Fig. 1 , 2 and 5) help mixing the solution. It should be noted 
that in the absence of agitation, HI solutions remain stable for months, even in the presence of 
hydrophobic surfaces. Diffusion of HI molecules alone is therefore too slow to allow efficient building up 
of HI aggregates at the material surfaces. Mass transfer to surfaces is determined by the dimensionless 
Damköhler number Da = konCs0h/D, where kon is the association rate constant (mole-1.m3.s-1), Cs0 the 
surface density of binding sites (mole.m-2), h the microwell size (m) and D the HI diffusion constant (m2.s-

1) 17. This number represents the ratio of the reaction rate with the surface (konCs0h
-1) to the inverse of the 

characteristic diffusion time to the surface (D/h2). Assuming kon = 109 M-1.s-1 and Cs0 corresponding to 1 
HI molecule per 4 nm2 results in Da = 1015 proving that HI transport to the surface is strongly diffusion-
limited. Mixing therefore ensures a constant HI concentration near the material surface, which is 
favourable for HI aggregation. Between 600 and 700 rpm, the insulin aggregation lag time decreased 
sharply, indicating that the nucleation layer is efficiently form beyond 700 rpm. Above 900 rpm, the lag 
time increased again in parallel to the hydrodynamical shear stress, possibly because ‘aggregation centers’ 

detach from the well surface (Fig. 6A).  
 
To study aggregation growth rate at a low rotation speed, hydrophobic microwell plates were filled 

with HI and agitated at 1200 rpm during the lag time until the aggregation just started, then they were 
further agitated at different rotation speed, and the aggregation kinetics was recorded using ThT to stain 
amyloidal aggregates in the fluid phase (Fig. 6B open squares). At rotation speeds higher than 600 rpm, 
the HI solution was continuously agitated at the indicated speed (Fig. 6B, filled squares). There is a 
continuous increase of the growth rate with the rotation speed, in proportion to the average hydrodynamic 
shear stress experienced at the well-fluid interface, which shows that agitation induces the release of 
aggregates in solution (solid line, Fig. 6B).  

 
Agitation has therefore three effects : (i) it allows mixing, preventing the formation of a diffusion 

layer, (ii) it detaches large aggregates from the surface and (iii) it slows down aggregation because it 
detaches seeds from the material surface. It is also possible, although we have not yet evidence for it, that 
shear stress at the interface helps protein conformational change.   
 
 
Effect of pH, temperature and material surfaces on insulin aggregation 
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It is well known that HI solutions spontaneously form amyloidal fibers at pH 2 and 60°C, without 
agitation 7, 18, 19. Under these conditions, HI aggregation also proceeds after a 2-hr lag phase, which can be 
reduced by seeding with 5% aggregates 20. The aggregates formed under these conditions bear some 
similarity with those obtained at pH 7.4 and 37°C with agitation: both indeed contain extensive 
intermolecular b-sheets revealed by IR spectroscopy and ThT fluorescence. The ThT fluorescence 
intensity per µg of aggregates is the same, whatever the pH during aggregation. Furthermore, the 
aggregates formed at pH 7.4 and 37°C with agitation in the presence of hydrophobic surfaces are able to 
seed the formation of HI fibers at pH 2 and 60°C without agitation (Table 1). The morphology of the 
aggregates is nevertheless different since the aggregates observed on hydrophobic surfaces (Fig. 5) are 
much smaller than the long fibers observed at low pH 21. 

 
The absence of agitation required for HI aggregation at pH2 and 60°C could be indicative that in 

these conditions, the nature of material surfaces played no role. We therefore investigated HI aggregation 
at different pH and temperature in hydrophobic and hydrophilic multi-well plates using ThT fluorescence. 

First we studied the effects of surfaces and temperature on HI aggregation at pH 2 and 7. At 37°C, HI 
aggregation at pH 2 was strictly dependant on the presence of hydrophobic surfaces, as it is at pH 7 (Fig. 
7A). At pH 7, when the temperature was raised, the HI aggregation rate increased on both hydrophobic 
and hydrophilic surfaces (Fig. 7B). The activation energy for the nucleation rate was three times higher in 
the presence of hydrophilic surfaces than in the presence of hydrophobic ones (33 ± 4 kcal.mol-1 vs 10 ± 2 
kcal.mol-1).  This explains why HI remains stable for long times in the presence of hydrophilic surfaces at 
pH7. In contrast, the activation energy for the amyloid fiber growth rate was the same for hydrophobic and 
hydrophilic surfaces (21 ± 4 kcal.mol-1). Similar conformational changes are thus likely to be associated 
with aggregate growth in solution or on the surface. 

Second, we investigated the effect of pH on HI aggregation (Fig. 7C). In this experiment, an HI 
solution was agitated at various pHs at 37°C in the presence of hydrophilic surfaces and aggregate 
formation was recorded by both turbidity and ThT fluorescence. At low or high pH, no aggregation 
occurred after 16 hrs, as previously reported. At a pH close to the pI of HI, aggregation occurred within 
minutes, but the aggregates did not appreciably bind ThT (Fig. 7C). These aggregates are therefore 
essentially non-amyloidal, which is confirmed by their FTIR spectrum showing mainly a-helical structure 
(Fig. 4E, compare to Fig. 4C and D). In conclusion, HI aggregates can be amyloidal or not, and amyloidal 
HI aggregates form following two mechanisms: independently of the material surface at high temperature, 
and on hydrophobic surfaces at lower temperatures.  
 

DISCUSSION 
 

We first showed that hydrophobic surfaces stimulate the formation of large amounts of HI 
amyloid fibers. The characteristic structure of these aggregates was revealed by infrared spectroscopy and 
by Thioflavin T fluorescence. In contrast, aggregates obtained at a pH close to the pI of insulin keep an IR 
amide band similar to that of soluble insulin, and do not bind ThT. An irreversible conformational change 
is therefore required for the formation of insulin amyloid fibers. The seeding experiments of Fig. 1 and 2 
clearly show that aggregation takes place on the surface, and not in the bulk solution. Large amounts of 
insulin indeed accumulate on hydrophobic surfaces before the onset of aggregation (Fig. 1A, Fig. 5). 
Amyloid fibers therefore form on pre-adsorbed insulin. This requires agitation, to prevent the formation of 
a diffusive layer that would strongly delay nucleation (Fig. 6A). Order of magnitude calculations explain 
why no aggregation is observed in multiwall plates below 600 rpm. Mixing requires that the kinetic 
energy of the fluid is sufficient to modify the shape of the free fluid surface, creating a rotating wave 22. 
The kinetic energy is Ec = ½ mfluid v

2, where mfluid is the fluid mass (200 µg) and v the maximum linear 
speed (v = 2prw, with r the well radius and w the rotation rate). The surface energy of the free fluid 
surface is Es = pr2g, where g is the fluid surface tension. The Ec/Es ratio is equal to 2pmw2/g = 1.5 for w = 
600 rpm and g = 70 N.m-2. At this rotation speed, the kinetic energy is high enough to deform the fluid.  
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Fig. 2B furthermore indicates that the aggregation promoting structures are fragile and can be 
partially washed away.  The prefibrillar aggregates that form on the surface are thus likely to be released 
thanks to the mechanical forces provided by the agitation. Increasing the shaking rotation rate indeed 
accelerates the release of amyloid fibers in solution, in proportion to the average hydrodynamic shear 
stress (Fig. 6). This explains why small aggregates (< 100 nm) are not observed in suspension (Fig. 3). 
Micron-sized aggregates are thus released from the surfaces. The force exerted by the viscous shear stress 
on an object attached to a surface indeed increases as the square of its size (F = s.S, where s is the wall 
hydrodynamical shear stress, S the projected surface area of the object). At the estimated shear stress 
experienced in multi-well plate experiments (1 Pa), the force exerted on a 100 nm particle attached to the 
side of the well is only 10-14 N, whereas it is 10-12 N for a 1 µm one. Assuming that the particles are 
associated to the surface by non-covalent interactions, ranging to a few Å and amounting to a few kBT, 
only mechanical forces larger than 10-12 N can detach them. This is the order of magnitude to detach 
bacteria from surfaces 23, 24. Concerning the lag time, agitation has two opposite effects: a promoting one, 
because it allows mixing and detachment of fully formed aggregates and an inhibiting one, because it 
breaks the fragile growing structures at the material surfaces.  

 
Converting soluble insulin into amyloid fibers, involves the conversion of an overall a-helical 

conformation into extended b-sheets (Fig.4), which requires activation energy (Fig. 7). The activation 
energy for amyloid fiber growth is the same, whether aggregation takes place on the surface or in the bulk. 
It is comparable to the one obtained previously for bovine insulin 25. Interestingly, the activation energy 
for the nucleation step in the presence of hydrophobic surfaces is smaller than that for the growth of the 
fibers. This indicates that the surface acts as a catalyst. At a pH close to the pI, a fast aggregation 
mechanism takes place that does not lead to amyloid fibers. At extreme pHs (2 and 7), insulin does not 
readily form amyloid fibers in solution, unless the temperature is risen enough to denature the protein or a 
hydrophobic surface is provided. In solution, insulin molecules are indeed separated by electrostatic 
interactions. On the surface, this repulsion is compensated by the formation of hydrophobic interactions 
with the surface. This increases the local insulin concentration, which favours conformational changes. 
This explains why the surface is a catalyst of nucleation, both at pH 2 and 7. Since large amounts of 
insulin form on the surface, the initial conformational changes are reproduced in subsequent protein 
layers. Experimental evidences by several groups 7, 26, 27 have pinpointed the LVEALYL peptide as a 
structural element able to connect insulin monomers within a fiber. We recently showed that this peptide 
indeed accelerates only hydrophobic surface-induced aggregation, both at pH 2 and pH 7, but it has no 
effect in the presence of hydrophilic surfaces 28. Hydrophobic surfaces are therefore necessary for the 
peptide to exert its catalytic role.  

 
In support of our observations, it is noteworthy that hydrophobic surfaces influence the conformation 

of the beta amyloid peptide and the cellular prion protein 29, 30. Similarly to our findings, Giacomelli and 
Norde 31 showed that the interaction between the Ab (1-40) peptide and hydrophobic Teflon surfaces 
proceeds in two steps. At a low surface coverage, the Ab peptide keeps the a-helical structure, but as the 
surface density increases, a cooperative conformational transition takes place, that results in b-sheet 
formation. Moreover, Ab (10-35) monolayers adsorbed on such surfaces induce the aggregation of Ab in 
solution 32. This points out the importance of material surfaces in protein aggregation. 
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TABLES 

 
Table 1: Cross-seeding experiments. 
 
Insulin seeds were prepared at pH 1.6, 60°C or at pH 7.4, 37°C on hydrophobic surfaces, as described in 
Materials and Methods. Aggregates were recovered by centrifugation and mixed with a fresh HI solution 
(5% w/w). A sample without seed was also prepared. The samples were then incubated at 60°C pH2 and 
the aggregation was monitored by OD600nm. In addition, the mass of the aggregates in the solution was 
determined by the BCA assay after filtration (0.45 µm cutoff). The lag time and the maximum turbidity 
were determined using the OD600nm measurements. The growth slope was determined using the BCA 
measurements of the aggregated protein.  
 
Conditions Lag time (hrs) Growth slope  

(µg.hr
-1

) 

Maximum turbidity 

(OD600nm) 

100 µg HI without 

seeds 

7 ± 1 6.1 ± 0.3 0.08 ± 0.01 

100 µg HI + 5 µg 

seeds obtained at pH 

1.6 and 60°C 

1.5 ± 0.5 34 ± 1 0.12 ± 0.01 

100 µg HI + 5 µg 

seeds obtained at pH 

7.4, 37°C, on 

hydrophobic surfaces 

0 35 ± 1 0.13 ± 0.01 
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FIGURE LEGENDS 

 
FIG 1. Precursors of insulin aggregates form on hydrophobic glass surfaces.  

A: Kinetics of human insulin adsorption and aggregation on hydrophilic or hydrophobic beads. A 
HI solution was agitated at 37°C, pH 7, in a borosilicate tube, in the presence of plain (open symbols) or 
Surfasil®-treated (closed symbols) borosilicate beads. The amount of soluble (circles), aggregated 
(triangle) and adsorbed (squares) HI is plotted as a function of the incubation time.  
B: Seeding experiments. A HI solution was pre-incubated for 2 hrs at 37°C, pH 7, in the presence of 
Surfasil®-treated borosilicate beads, then the fluid phase and the beads were separated. The fluid phase 
was transferred to a new borosilicate tube containing plain borosilicate beads (open symbols). The pre-
incubated beads were washed and transferred to a new borosilicate tube containing a fresh HI solution 
(closed symbols). The amount of soluble (circles), aggregated (triangles) and adsorbed (squares) HI is 
plotted as a function of the incubation time after transfer.  
 
 

FIG 2. Precursors of insulin aggregates form on hydrophobic plastic surfaces. 

A: Kinetics of human insulin aggregation in hydrophilic or hydrophobic multi-well plates. A HI 
solution was agitated at 37°C, pH 7, in a hydrophilic (open symbols) or hydrophobic (closed symbols) 
polystyrene multi-well microplate. The optical density at 600 nm is represented as a function of the 
incubation time.  
B: Aggregation centers can be partially removed from hydrophobic surfaces by washing. a HI 
solution was pre-incubated at 37°C, pH 7, for the indicated times in a hydrophobic multi-well microplate, 
then the solution was removed and the plate was filled with a fresh HI solution, either without (open 
squares) or after washings (closed squares). The incubation was continued at 37°C, pH 7, for 16 h. The lag 
time of HI aggregation was determined and is represented as a function of the pre-incubation time. 
 

FIG 3. Particle quantification during insulin aggregation. A HI solution was agitated at 37°C, 
pH 7, in the presence of hydrophobic surfaces. At the indicated time, the number of large aggregates (> 1 
µm) was determined by MFI (open diamonds). The size of HI oligomers and small aggregates was 
determined on filtrated (100 nm cut-off) and non-filtrated fluid phase samples with DLS (closed 
diamonds). The results shown are average ± standard deviation.  
A : Size of the HI oligomers and large aggregates present in the fluid phase. After the lag phase (2.5 
h), the presence of HI aggregates larger than 0.1 µm could be deduced from the DLS signal of unfiltrated 
samples. However, their size could not be determined. The grey region represent aggregate sizes non 
accessible to DLS or MFI measurements.  
B: Size distribution of insulin aggregates detected by MFI. The cumulated number of particles per µL 
is represented as a function of particle size in µm, for the HI solution harvested at the indicated times.  
C: Number of large HI aggregates present in the fluid phase. The number of particle per µL counted 
by MFI (open diamonds) is plotted as a function of the incubation time, alongside with ThT fluorescence 
(crosses), normalized to its maximum value.  

 
FIG 4. FTIR spectra of HI solutions and final aggregates. HI solutions were prepared at 

different pHs (2, 5.5 and 7). The solution at pH5.5 spontaneously aggregated in hydrophilic containers. HI 
solutions at pH 2 and 7 were aggregated in the presence of hydrophobic surfaces.  

A and C represent FTIR spectra before and after aggregation at pH7. B and D represent FTIR 
spectra before and after aggregation at pH2. E represents the FTIR spectrum of the aggregated HI solution 
at pH5.5. 

The FTIR spectra (bold lines) were decomposed into b-sheet (1626-1636 cm-1), a helix (1650-
1656 cm-1) and b-sheet/b-turn (1672-1677 cm-1) contributions (thin lines). 

F summarizes the relative contribution of each spectral component to the overall absorbance in the 
range 1600-1700 cm-1. 
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FIG 5. Morphology and structure of HI aggregates on hydrophobic surfaces.  

A: AFM images of dried HI aggregates. a HI solution was incubated for the indicated times at 37°C, pH 
7, in the presence of Surfasil®-treated borosilicate beads, then the beads were seprated from the fluid 
phase, washed, mildly dried and imaged by AFM. Images were taken before (1h30) and at the onset (3h) 
of the aggregation phase, and after full aggregation of the sample (18h). Scale bar = 0.5 µm. Arrowheads 
point to dendritic (1h30) and spherical (3h, 18h) HI aggregates. 
 

FIG 6. Effect of agitation on HI aggregation kinetics.  
A: Effect of agitation on HI aggregation lag time. A HI solution was agitated at 37°C, pH 7, in a 
hydrophobic polystyrene multi-well microplate, at the indicated rotation speed. HI aggregation was 
monitored using ThT fluorescence and the lag time was determined as explained in Materials and 
Methods. The grey region defines rotation speeds insufficient to ensure mixing of the initial HI solution. 
The solid line represent a fit of the data with the equation k(w) = A w3/2, which indicates that the growth 
rate is proportional to the average wall shear stress in an orbital shaker 33. The dashed line represents the 
effect of shaking on the mixing efficiency and is hand-drawn. 
B: Effect of agitation on HI aggregation growth rate. Filled squares : A HI solution was agitated at 
37°C, pH 7, in a hydrophobic polystyrene multi-well microplate, at the indicated rotation speed. Open 
squaress : A HI solution was agitated at 37°C, pH 7, in a hydrophobic polystyrene multi-well microplate, 
at 1200 rpm until the onset of aggregation, then the agitation was pursued at the indicated rotation speed. 
HI aggregation was monitored using ThT fluorescence and the growth rate is expressed as the percentage 
of insulin aggregated per hour. Error bars are smaller than the symbol size. Note that once aggregation has 
started, the fluid phase is well mixed in micro-wells even at rotation speeds as low as 100 rpm. The solid 
line is defined as in Fig. 6A. 
 

FIG 7. Effect of pH, temperature and material surfaces on HI aggregation kinetics.  

A: HI aggregation at pH 2 is also accelerated by hydrophobic surfaces.  A HI solution was agitated at 
37°C, pH 2, in a hydrophobic (closed symbols) or hydrophilic (open symbols) polystyrene multi-well 
microplate. HI aggregation was monitored by ThT fluorescence. Under these conditions, aggregation 
starts at 6 h and 26 h on hydrophobic and hydrophilic surfaces, respectively.  
B: Determination of activation energies for the nucleation and growth rate of HI aggregates. A HI 
solution (pH 7) was agitated at different temperatures, in a hydrophobic or hydrophilic polystyrene multi-
well microplate. HI aggregation was monitored by ThT fluorescence. The aggregation nucleation and 
growth rates were determined as explained in Materials and Methods and are plotted as a function of the 
inverse of the absolute temperature (K) to determine the activation energies. The solid line represents the 
best fit of the data with the equation k(T) = k0 exp(-Ea/RT), where Ea is the activation energy. The growth 
rates obtained in the presence of hydrophilic or hydrophobic surfaces at different temperatures were fitted 
with the same equation.  
C: HI aggregation on hydrophilic surfaces as a function of the pH. A HI solution was prepared at 
different pH, using glycine, MES or phosphate as buffers, and agitated at 37°C in a hydrophilic 
polystyrene multi-well microplate, for 16 hours. HI aggregation was monitored by turbidity (closed 
symbols) and amyloidal fiber formation by ThT fluorescence (open symbols). ThT fluorescence is 
expressed as percentage of the fluorescence signal obtained after 12h incubation in hydrophobic multi-
well microplates.  
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4.1. Aim of the study 

As seen in the introduction and in previous chapter, insulin nucleation on hydrophobic 

surfaces is an important parameter of insulin aggregation on surfaces. In order to analyze the 

nuclei formation at the surface, we needed both to obtain information of the mass of protein 

that adsorbs on the surfaces, and to have information of the structure of the adsorbed proteins. 

Precedent study 
88

 and first chapter shown that the protein amounts adsorbed during the lag 

phase are extremely low, of the order of the 100 nanogram in a 1.8 cm
2
 microwell. Moreover, 

the time evolution of the adsorbed amount of protein and protein structure changes has to be 

studied. Little is known about the characteristic time of insulin adsorption on hydrophobic 

surfaces. Consequently, we needed to choose a technique able to detect protein adsorptions as 

low as a few hundreds of pictograms per cm
2
 with real time resolution.  

The bicinchoninic acid assay, which directly measures the protein mass, is not 

sensitive enough to obtain confident measurements of protein adsorption lower than the 

hundred of nanograms per cm
2
. Another technique used in precedent studies is Thioflavin T 

(ThT) fluorescence measurements in fluorometer. ThT fluorescence is sensitive to protein 

conformation. Indeed, ThT binds to extended β-sheets, which induces a specific fluorescence 

of the dye. As amyloid fibers are very rich in intermolecular β-sheets but not native insulin, 

ThT can be used to detect amyloid fibers formation. But this technique is usually used for 

solution fluorescence and fluorometers do not have enough numeric aperture to perform 

sensitive measurements of the small signal produced at the surface. Furthermore, to study the 

protein on the surface, these two techniques require different washes, which increase the 

measurement time to about ten minutes, which is not sufficient to monitor real time protein 

adsorption and aggregation kinetic on the surfaces. Consequently, the techniques used in the 

precedent chapter and in Ballet’s PhD thesis 
88

 are not appropriate to analyze the insulin 

adsorption kinetic and the amyloid aggregate formation on the surfaces. 

Other techniques can be used to study protein adsorption and association on surfaces. 

The Quartz Cristal Microbalance in dispersive mode (QCM-D) uses the piezo-electric effect 

to monitor the mass adsorption on a surface. This technique has excellent time resolution with 

high sensitivity on the mass adsorbed. Nevertheless, it is also sensitive to the hydration of the 

structures adsorbed on the surface. It is likely that the protein conformation changes related to 

fibril formation is accompanied with a change in the hydration of the protein on the surface. 

Consequently, QCM-D should be sensitive both to protein adsorption kinetic and to protein 
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conformational changes in a single signal. We therefore didn’t use this signal to start with, 

although it will be very useful later, to confirm the presence of conformational changes. 

Atomic Force Microscopy (AFM) after washing and drying has give information about 

aggregate structure on the surface with very high spatial resolution (nanometer scale, see 

AFM images in figure 5 in precedent chapter, page 77), but the lack of time resolution of that 

technique (~15 minutes) makes it unable to monitor the protein adsorption kinetic correctly. 

Here, we developed Surface Plasmon Resonance, Infrared Spectroscopy and fluorescence 

microscopy protocols in order to study insulin adsorption and structural changes on 

hydrophobic surfaces. 

4.2. Insulin adsorption kinetic and conformational changes 

Surface Plasmon Resonance imaging (SPRi) is a real time optical technique that is 

sensitive to optical index changes on the first 100 nanometers of a metal surface, usually a 

gold layer. At a certain angle, called critical angle of resonance, a metal layer does not reflect 

light as the electric and magnetic fields of the light are in resonance with an electron wave 

induced in the metal layer. This critical angle of resonance is decreased when the refractive 

index on the first nanometers of the surface is increased. As an accumulation of proteins on 

the surface will locally increase the refractive index, the reflectivity of the gold layer will be 

increased. This reflectivity change of the gold layer is monitored in real-time, revealing as 

small material accumulation as tens of picograms per millimeter square on the gold surface. 

Contrary to QCM-D, Surface Plasmon Resonance is not sensitive to the hydration of the 

structures at the surface. Consequently, it allows monitoring in real time of insulin mass 

adsorption kinetic during the few first minutes of insulin solution contact with hydrophobic 

surface up to one hour, which gives information on insulin nucleus formation on the surface. 

Here, a protocol was developed to obtain a gold layer treated both with PEG-thiol, a 

hydrophilic compound, and alkyl (C16)-thiol, a hydrophobic compound. So, we managed to 

analyze proteins adsorbed on systems with both hydrophilic and hydrophobic areas in a single 

SPRi experiment. Moreover, the use of both alkyls (C16) treated (hydrophobic) and Poly 

Ethylene Glycol (PEG) (hydrophilic, often used as a protein-repellent surface 
108–110

) treated 

surfaces allowed to separate the contribution of the index changes due to the bulk solution 

from the index changes due to insulin accumulation on the surface (see Fig. 3 of following 

article). 
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Scheme 4.1: Scheme of the experimental device used in SPR sensorgrams acquisition. 

      SPRi results shows that two pools of insulin exist on hydrophobic surfaces: a first pool of 

weakly adsorbed insulin molecules and a second pool of more strongly adsorbed insulin 

molecules. When the duration of the contact between the insulin solution and the hydrophobic 

surface is increased, the pool of strongly adsorbed insulin is increased compared to the pool of 

weakly adsorbed insulin. Moreover, both weakly and strongly adsorbed pools of insulin are 

more strongly adsorbed as the time of contact increases. These results also indicate that the 

apparition of the strongly adsorbed insulin pool, which is proposed to be the insulin 

population involved in nuclei formation and fibril growth, has a time scale evolution of 

several minutes. This indicates that insulin conformation changes have to be analyzed with 

techniques of time resolution of the few minutes.  

Since protein structures change during aggregation the vibrations of atoms within the 

protein structure are also changing. These vibrations can be detected by infrared spectroscopy. 

The molecular infrared wavelength absorption is linked to the covalent bond vibrations in 

molecules. In proteins, the most important vibrations are the C=O and N–H amide bonds. As 

these bonds are involved in H–bonding, they are very sensitive to changes in secondary 

structure. The insulin structures formed on hydrophobic surfaces were monitored using a 

silicon prism by Total Attenuated Reflectance Fourier Transformed Infrared Spectroscopy 

(ATR-FTIR) (See Scheme 4.2.). The prism was treated with phenyldimethylmethoxysilane, to 

obtain a hydrophobic (water contact angle = 103.1 +/- 3.7 °) sensor surface. Infrared 

spectroscopy has a time resolution of about 2 minutes, which is sufficient to analyze the 
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insulin conformation changes during the growth of the strongly surface adsorbed insulin pool, 

according to the SPRi results. Since the penetration depth of ATR-FTIR is about 1µm, the 

sensor integrates both the contribution of adsorbed protein and the soluble protein contained 

in the 1µm thick layer above the sensor. In our case, the baseline was done with the buffer 

solution, consequently, when proteins are added to the solution, the monitored absorbance is 

due to protein. The adsorption kinetics is obtained during 1 hour of solution flow on the 

surface, with regular absorbance measurements. Then, the surface is washed in buffer and 

strongly adsorbed insulin remains bound to the surface. Here, minimum protein remains in the 

solution, and the specific contribution of the adsorbed layer is obtained (see Experimental 

Procedures in the following article). 

 

Scheme 4.2: Scheme of the experimental device used in ATR-FTIR experiments with silicon crystal 
treated with PDMMS. 

Different signals can be obtained thanks to infrared spectroscopy. Absorbance 

frequencies depend on the nature of the bond (C–H, O–H, C–O, C=O…), on the vibration 

mode (stretch, twist, scissor…) and on the interactions with the environment. Consequently, 

infrared absorbance frequencies are specific for each chemical compound. Different signals 

are known for proteins in infrared spectroscopy. As the amide bond is the basic repeat unit of 

proteins, the prominent absorbance signals are due to amide bond vibrations. In addition, 

amino acid side chains may contribute to specific signals.  

Amide bonds give 9 characteristic bands called amide A, B, I, II…VII. Only amide A, 

I and II contain information related to protein conformation. The amide A band (about 3500 

cm
-1

) corresponds to N–H vibration. It is highly sensitive to H bonding, its wavenumber 

increasing as the strength of H–bonds decreases. The amide I band (between 1600 and 1700 

cm
-1

) is mainly associated with stretching vibration of the C=O, a chemical group which is 

directly related to the backbone structure. Most protein conformation changes involve C=O 
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H–bonds within the polypeptide main chain. As a result, the amide I signal consists of 

different peaks characteristic of the secondary structures in the protein (see Table 4.1). Amide 

II (between 1510 and 1580 cm
-1

) results from a combination between the N–H bending 

vibrations, the C–N stretching vibrations and the C–C stretching vibrations. This band is also 

conformational sensitive but, since several bonds and vibration modes are involved in the 

signal, extracting structural information from the amide II band is difficult.  

 

Table 4.1: Deconvoluted amide I band frequencies and assignments to secondary structure for protein 
in D2O. Frequencies are given in cm-1. From Kong et al. 

111 

Using ATR-FTIR, the nature of insulin conformational changes induced by adsorption 

on hydrophobic surface was studied. The magnitude of the signal confirmed that insulin 

adsorption increased with contact time and that most of insulin is strongly adsorbed. A slow 

change in insulin structure was characterized, that corresponds to the formation of structure 

with high β-sheet content. The spectrum of adsorbed insulin is different from that of fully 

aggregated insulin released in solution. The slow infrared rising signal at 1708 cm
-1

 could 

therefore possibly be related to aggregation nuclei on the surface. 

The use of fluorescence microscopy monitoring thioflavin T (ThT) fluorescence has 

then been used to confirm the slow apparition of β-sheet structures on hydrophobic surface. 

ThT is a fluorescent dye with high changes in excitation and emission wavelengths in 

presence of extended β-sheets. Fluorescence microscopy of insulin flowing in a flow cell on 

Dimethyl dichlorosilane (hydrophobic compound) treated glass slide was developed, see 

Scheme 4.3. Using fluorescence filters adapted to ThT fluorescence (see Figure 2.1) this 

system monitors at a micrometer scale the apparition of ThT fluorescence on the surface, 

which monitors the apparition of protein structures with high β-sheet content on the surface. 
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Scheme 4.3: Scheme of the experimental device used in fluorescence microscopy experiments. 

The major difficulty of that technique is that ThT binds by itself to hydrophobic 

surfaces, inducing a fluorescence shift, so the signal is not specific to extended β-sheet protein 

structures. Consequently, we first monitored the evolution of ThT fluorescence on the surface 

without protein. Free ThT adsorbs and desorbs in ~30 minutes. Then, it appears that the 

addition of protein decreases the ThT fluorescence, due to a competition on surface binding 

between ThT and proteins, analogous to the Vroman effect. The addition of a non-aggregative 

protein known to binds strongly to surfaces, Bovine Serum Albumin (BSA), shows that ThT 

fluorescence decrease with time and then stabilizes at a low level. Insulin addition, similarly 

to BSA shows a similar ThT fluorescence decrease during the first 20 minutes. But the 

surface fluorescence increases again after 40 minutes. Consequently, the ThT fluorescence 

signals obtained with this developed instrument shows the appearance of extended β-sheets on 

the surface after 30 to 40 minutes, which is consistent with ATR-FTIR results. ThT binds then 

strongly to this protein covered surface. Moreover, it was confirmed with this technique that 

adsorbed insulin β-sheet structures build on the surface are hardly affected by buffer washing. 

The techniques we developed for that study gives much new information on 

insulin/hydrophobic surfaces interactions. It appears that insulin adsorbs rapidly on the 

surface. Then, insulin stabilizes its interaction with the surface, which is characterized by the 

apparition of a strongly adsorbs insulin population. This stronger adsorption is also 

characterized by an α to β transition of insulin structure and the apparition of ThT positive 

protein aggregates on the surface in less than 1 hour (see Figure 4.1). These structures may 

then be released in solution in high shear stress conditions. Consequently, our results are 

consistent with data seen in the precedent chapter showing that insulin nucleation takes place 

on the surface 
88

. 
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Figure 4.1: Model of insulin accumulation and aggregation on hydrophobic surfaces. 1: fast protein 
adsorption without conformational changes. 2: slow conformational changes of adsorbed protein, and 
slow additional protein accumulation. 3: release in solution of formed amyloid fibrils. 

 In the precedent chapter, AFM images (see Figure 4.2) of hydrophobic beads 

incubated with insulin show that, during the lag-phase, different large filamentous structures 

of 20 nm large per 20 nm high and 100 nm long where detectable on the surface. These 

structures could be insulin aggregation nuclei. Their volume can be estimated to be 40000 

nm
3
, with a contact area with the surface of 2000 nm

2
. Assuming that insulin monomers are 

cubes of 3.2nm x 3.2nm x 3.2nm (Crowfoot et al. 
112

), an order of magnitude of the size of 

stable nuclei composition would be of ~1250 insulin monomers per nuclei. This corresponds 

to a mass of 1.2*10
-17

g per nucleus (human insulin molecular mass is almost 5808 g.mol
-1

). 

Estimating nucleus surface occupation at 2000 nm
2
, a surface fully covered with insulin 

nuclei should present an insulin surface concentration of 6 mg.m
-2

. As the surface coverage is 

estimated by ImageProPlus software at ~40 %, insulin concentration at the surface can be 

evaluated at 2.4 mg.m
-2

. In microplates, we can observe that BCA measurements give ~3 

mg.m
-2

 of adsorbed insulin for similar insulin incubation time. Considering the differences 

between BCA and AFM conditions (low precision of protein concentration evaluation with 

AFM images, AFM samples were dried before observation which can highly change the 

protein structures size) it can be proposed that BCA measurements are in the same order of 

magnitude than AFM observations: stable insulin aggregation nucleus on the hydrophobic 

surface should be composed of ~1250 insulin monomers, which is consistent with previously 

published results that estimated the repeating unit of insulin fibril to about 1240 insulin 

monomers 
78

. This order of magnitude could be a basis for insulin aggregation mathematical 

modeling. Nevertheless, the AFM images used for these calculations were obtained from 
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hydrophobic beads with surfaces geometries that are not clearly defined. Moreover, they were 

shacked in a rotation shaker, where different beads collide together, so the mechanic forces 

are badly defined in such cases. A solution consists of using a flow chamber on flat surfaces. 

Surface geometry and hydrodynamic forces are well defined in such experiment. In that 

procedure, the diminution of hydrodynamic shear stress and mechanic collisions leads to the 

formation of larger nuclei on the surface (see Figure 4.3). Indeed, the protein accumulation 

spots rises to 50x50x30nm and 100x100x50nm for the biggest ones, which corresponds to 

5000 to 6500 insulin molecules in respect to the calculation exposed above. This increase of 

nucleus size is in agreement with the studied effects of agitation on insulin nucleation and 

aggregation in the previous chapter. No protein concentration BCA measurements have been 

done in such conditions, but according to the above calculation, the protein concentration on 

the surface should reach 10 mg.m
-2

. Further studies of protein accumulation on the surface 

with time in flow chamber experiments could give important information for theoretical 

modeling of the protein/surface interactions and the nuclei formation process.  

 

Figure 4.2: AFM image of dried surface incubated 1.5h at 37°C with HI solution pH 7.3 under agitation 
and buffer wash. Scale bar = 0.5 µm. Arrowheads point to filamentous structures used for insulin 
surface coverage evaluations discussed in the text. 

 

Figure 4.3: AFM image of dried surface incubated 30minutes at room temperature with HI solution pH 
7.3 and buffer wash. 
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Chapter 5: Kinetic modification of 

surface-induced insulin aggregation by 

short peptide sequences 



 

101 

 

5.1. Aim of the study 

In the previous chapter, we studied insulin adsorption and changes in structure by 

Surface Plasmon Resonance, Infrared spectroscopy and fluorescence microscopy. In the 

following, we used those techniques to study the aggregative activity of peptide LVEALYL. 

Our interest to this peptide was driven by the paper by Ivanova et al. (2009) who 

showed that this peptide was able to reduce insulin lag-time, at sub-stoichiometric amounts 

and at pH 2.5 
48

. In their work, two insulin peptides were studied: LVEALYL (Residues B11-

B17 in insulin sequence) and SLYQLENY (Residues A12-A19 in insulin sequence). Both are 

able to form amyloid fibers at pH 2.5. Only the first one influences insulin aggregation, in a 

complex manner. At substoichiometric concentrations, the peptide accelerates insulin 

nucleation, shorting the nucleation times without changing the aggregation growth rate 

(Fig.5.1). At stoichiometric concentrations and above, the peptide decreases the insulin 

aggregation growth rate. (see Figure 5.1)  

 

Figure 5.1: Fibrillation assay showing that B-chain LVEALYL accelerates insulin fibril 
formation when added to the reaction mixture at low concentrations, but inhibits insulin fibril 
formation at higher concentrations.  

(Figure from Ivanova et al. 48) 

5.2. Surface-dependant effect of LVEALYL peptide on insulin aggregation 

The effect at sub-stoichiometric concentration was puzzling. We hypothesized that the 

acceleration of nucleation could be due to a surface effect. In Ivanova et al., experiments were 

performed at pH 2.5, as they usually are. I first reproduced their work at pH 2.5, 37°C, and 

observed that hydrophobic surfaces were required. No aggregation took place on PEG-coated 

microwell plates. Then, I showed that at pH 7.3 
88

, substoichiometric amounts of the 

LVEALYL peptide also accelerated insulin nucleation, but not aggregation growth rate. I also 

proved that hydrophobic surfaces were required to obtain this effect of the peptide at pH 7.3. 

As a conclusion, I proved that the LVEALYL peptide accelerates insulin nucleation in a 

surface-dependant manner, independently to the pH 
105

. Moreover, it was previously 
88

 proven 



 

102 

 

that the chaperone DnaK was able to bind aggregated insulin and surface adsorbed insulin, but 

was not able to bind soluble insulin. This shows that adsorbed insulin involves some 

conformational changes and exposes a segment recognized by DnaK. Rüdiger et al.
113

 showed 

that DnaK binds to an insulin B chain peptide encompassing the LVEALYL segment. This 

exposed segment is therefore likely to be involved in insulin aggregation mechanism. I further 

proved that (i) DnaK is also able to counterbalance the LVEALYL peptide effect on insulin 

aggregation, and (ii) DnaK binds aggregated LVEALYL peptide. These results suggest that 

the LVEALYL segment may be a part of the sequence exposed by insulin when adsorbed to 

the surface.  

This work and the structural model proposed by Ivanova et al. convinced us that the 

LVEALYL sequence played a central role in insulin aggregation. Furthermore, the fact that 

the peptide act only in presence of hydrophobic surfaces leads us to hypothesize that the 

peptide first interacted with the surface, providing a surface that helped the insulin 

conformational change. We therefore demonstrated this hypothesis (see following article). To 

this purpose, we first pre-incubated a hydrophobic surface with the peptide and observed that 

the lag-time for insulin aggregation increased thanks to the adsorbed peptide. Furthermore, 

the presence of the peptide potentializes insulin binding on hydrophobic surfaces. In addition, 

we showed that the adsorbed peptide adopts a β-sheet rich conformation. Finally, ATR-FTIR 

experiments confirm that the supplementary HI bound in the presence of the peptide adsorbed 

in a β-sheet structure. This is shown in the paper exposed below. 

 

5.3. Minimum structure of an amyloidogenic peptide consists of alternating hydrophilic 

and hydrophobic amino-acids 

We then took advantage of the peptide effect on insulin aggregation to gain insights in 

the molecular motives needed to induce insulin conformational change. This is going to be the 

second part of the article. To this purpose, we decided to use mutants of the peptide, mixed 

with insulin solution and to observe the insulin aggregation kinetic changes induced by the 

different peptide sequences. See amino acid structures and energy of transfert in water pH 7 in 

table 5.1. 

Looking at the model of insulin amyloid fibers 
48

, we noticed that two glutamate (E) 

residues are close in the structure (Figure 5.2). We assumed that, at pH 7.3, the presence of 

these two negative charges was unfavorable for the protein/peptide interaction. Consequently, 

we imagined that changing the charged E residue for a polar residue, like Threonine (T), 

would increase the interaction with insulin and hence increase its effect on insulin 

aggregation. In the same line of thought, a positively charged residue, like Lysine (K) or 

Ornithine (O) should even present a stronger interaction with insulin and a higher acceleration 

of insulin aggregation. Assuming that the peptide could have the same conformation on the 

surface that the amyloid structure, a repulsive electrostatic interaction could therefore take 

place between the E (residue 3) in the peptide sequence and the E (residue B13) in insulin. 
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amino acid 

(ΔGtransfer) 

one letter 

code 
structure 

 

amino acid 

(ΔGtransfer) 

one letter 

code 
structure 

 

glutamic acid 

(-8.2) 
E 

 

 

tyrosine 

(-0.7) 
Y 

 

aspartatic acid 

(-9.2) 
D 

 

 

phenylalanine 

(3.7) 
P 

 

threonine 

(1.2) 
T 

 

 

tryptophane 

(1.9) 
W 

 

serine 

(0.6) 
S 

 

 

alanine 

(1.6) 
A 

 

lysine 

(-8.8) 
K 

 

 

leucine 

(2.8) 
L 

 

ornithine 

(-9.8) 
O 

 

 

proline 

(-0.2) 
P 

 

Table 5.1: Structure, one letter code and energy of transfer in water of amino acids used in 
this thesis. Energy of transfer of the amino acid in water at pH 7 (ΔGtransfer) is in kcal.mol-1. 
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Figure 5.2: LVEALYL segments interactions in fibril aggregates at pH 2. Inside the green 
circle: two Glutamate (E) residues (negatively charged at pH 7 but neutral at pH 2). 

(Image from Ivanova et al.48) 

As expected, the LVTALYL peptide further decreased the insulin lag-time compared 

to the wild type peptide LVEALYL, specifically in the presence of hydrophobic surfaces. 

However, it appeared that the LVKALYL and LVOALYL peptides (O is Ornithine amino-

acid) had no effect on insulin aggregation albeit they bear positive charge. Consequently, it 

seems that the charge interaction between the two glutamate (E) residues between the peptide 

and the insulin molecule is not a key parameter of the peptide efficiency to enhance insulin 

aggregation. 

Then, we studied another mutant peptide, LVAELYL, which conserved the same 

amino-acid composition, but contains a single inversion in the middle of the sequence. This 

inversion was chosen because we supposed it should be highly disturbing the peptide/insulin 

interactions due to the change in the position of the glutamate (E) charge, leading to an 

ineffective peptide. To our surprise, it appeared that this peptide was even more efficient than 

the wild-type in decreasing the lag-phase. It was as effective as the LVTALYL peptide. 

Again, LVTALYL and LVAELYL peptides have significant effects only in presence of 

hydrophobic surface. It must be noted that none of the peptide tested aggregated by itself in 

the conditions studied (37°C pH 7.3 for 24 hours). The strong effect of the inverted 

LVAELYL was puzzling until I did a seeding experiment showing that peptide binding to the 

surface was required. Preincubating a hydrophobic surface with the LVAELYL peptide 

induces an important decrease of insulin nucleation time (see Table 1 and Figure 3 in 

following paper). The adsorbed peptide acts as a seed for further insulin aggregation. 

The seeding experiments prompted us to examine how a peptide could bind on a 

hydrophobic surface. Since insulin is α-helical in solution, and converted into β-sheets in 

amyloid aggregates, it is likely that the peptide would bind in β-sheet conformation to the 

surface through hydrophobic amino-acids, and would be stabilized by inter-peptidic H-bounds 

(see Figure 5.3). In a β-sheet structure, the lateral chains of the amino-acids are organized in a 

planar structure, perpendicularly to the β-sheet plan. Furthermore, these lateral chains are 

alternatively distributed on both sides on the main chain. In the case of hydrophobic surface, it 

is thus likely that half of the amino-acids are orientated to the hydrophobic surface, and the 
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other half are orientated to the solution, or to the incoming insulin molecules. Taking in 

account the hydrophobicity of each lateral chain, it is possible to evaluate which of the two 

conformations of the peptide β-strand should be energetically favored compare to the other. 

The negative charge on the glutamate (E) residue makes it very polar and hydrophilic. It 

follows that the wild type and swapped peptides will bind to hydrophobic surfaces with a 

different configuration (see Figure 5.4). As a consequence, the LVEALYL peptide presents 

only 3 hydrophobic lateral chains to the hydrophobic surface, whereas LVAELYL peptide has 

4 hydrophobic amino-acids facing the surface. This justifies to a higher adsorption of this 

mutant peptide on the surface, observed by BCA, which could explain the effect of the EA à 

AE swap. Similarly, LVTALYL (peptide 3) peptide conformation analysis on hydrophobic 

surface shows that this peptide could have a similar organization than the LVAELYL peptide, 

with 4 hydrophobic amino-acids facing the surface (see Figure 5.4), because T is weakly 

hydrophobic, which leads to similar adsorbed stability than the LVAELYL peptide. Since the 

effect of the peptides is related to their presence on the hydrophobic surface, a better peptide 

adsorption could explain a stronger effect of the peptides on insulin aggregation. 

Consequently, according to these results, it seems that the peptide action on insulin 

aggregation kinetic is dependent on its stability to form stable β-sheets on the surface. 

 

Figure 5.3: A. Face view of LVEALYL peptide organized in β-sheet, stabilized by intermolecular H-
bounds (green dot points). B. Side view of LVEALYL peptide, organized in β-sheet on a hydrophobic 
surface. Main chain in dark, lateral chains in red or violet, depending on their position (top or bottom) 
to the main chains plan. Figure made with Protein Data Base Swiss PDB Viewer using the atomic 
coordinates of the LVEALYL segment in the putative HI amyloid structure. 
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To test for the importance of the peptide secondary structure organization on the 

surface, we introduced a proline (P) amino-acid in the sequence, which is known to be a 

structure-disruptor residue. It appears that all the proline-containing peptides (LPEALYL, 

LVEPLYL, LVPTLYL and LVTPLYL) have no effect on insulin aggregation, confirming the 

importance of peptide secondary structure for its interaction with insulin. 

In order to confirm that the peptides effect on insulin is dependent on the β-

conformation of the adsorbed peptide, but not (or weakly) dependant on the sequence, we 

used peptides with alternating hydrophilic and hydrophobic residues. First, half of the amino-

acid sequence was modified from the LVEALYL, keeping all amino-acids that presumably 

face the hydrophobic surface and changing all the others into Serine (S) (see Scheme 4.2). We 

obtained the SVSASYS peptide (peptide 4). We similarly, modified the LVAELYL peptide to 

get the LSASLSL peptide (peptide 5). These 2 peptides reduced insulin aggregation lag-time. 

Nevertheless, the LSASLSL adsorbed more on surfaces and reduced more the insulin 

aggregation lag-time than the SVSASYS. This again can be related to the fact that LSASLSL 

could present 4 hydrophobic residues to the hydrophobic surface (L–A–L–L) compared to the 

SVSASYS which would present only 3 hydrophobic residues (–V–A–Y–) (see Scheme 5.2).  

 

Figure 5.4: A. LVEALYL (peptide 1, red) and LVAELYL (peptide 2, blue) peptides possible β-strand 
conformations on hydrophobic surface. Activation energies are shown in yellow and calculated as 
explain in Material and Methods in the following article. B. Most energetically favorable β-strand 
conformation of LVEALYL, LVAELYL, LVTALYL, SVSASYS, LSASLSL and FSFSFSF peptides on 
hydrophobic surface. 

-  3.3 kcal.mol-1 
+ 3.3 kcal.mol-1 

+ 16.3 kcal.mol-1 
- 16.3 kcal.mol-1 

Conformation 1 Conformation 2 
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Moreover, the FSFSFSF peptide presents a significant ability to reduce insulin 

aggregation lag-time (lag time = 3.1 h ± 0.3), although it has no common amino-acid with the 

wild-type peptide. Nevertheless, the presence of phenylalanine residue (F) seems to reduce 

the activity of the peptide compare to the Tyrosine (Y). In line with this observation, the 

LVEVLFL (lag time = 3.6 h ± 0.2) was also less efficient than the LVEVLYL peptide (lag 

time = 2.4 h ± 0.2) to induce insulin nucleation time reduction. Similarly, the same effect is 

observed for tryptophan residue (W), as the LVEALWL induced less insulin nucleation time 

reduction (lag time = 3.8 h ± 0.3) than the LVEALYL peptide (lag time = 1.5 h ± 0.2). It 

could be due to a steric effect, as these residues are among the largest amino acids.  

In addition to these aggregation kinetic studies, insulin adsorption on hydrophobic 

surfaces in presence of the LVAELYL peptide was analyzed with Surface Plasmon 

Resonance. The peptide adsorption by itself gives a small signal, but in the presence of the 

peptide, more insulin binds to the surface (see Figure 1 in following paper). Moreover, 

Infrared spectroscopy confirmed that the wild type, the LVAELYL and the LSASLSL 

peptides adsorb on hydrophobic surface in a β-sheet conformation (see Figure 2 in following 

paper). It remains to be shown that FSFSFSF and LSASLSL peptides are adsorbed in a β-

strand conformation. 

 

5.4. Model of action of amyloidogenic peptides on surface-induced insulin aggregation 

Our results show that the local increase of insulin concentration on the surface due to 

the peptide would lead to fast nuclei formation on the surface and consequently to shorter lag-

times in insulin aggregation kinetics. One remaining question is the nature of these nuclei that 

are formed rapidly. A nucleus is a site or a structure where insulin fibril elongation kinetics 

constants prevail on fibril dissociation constants. It is unclear if, in presence of the peptide, (i) 

the insulin nuclei are build on the surface similarly to insulin nuclei without the peptide, or if 

(ii) the peptide-covered surface became itself a large nucleus. The fact that the presence of the 

peptide does not change significantly the growth phase of insulin aggregation suggests that 

the number of nuclei is not modified by the peptide, which is not consistent with the second 

hypothesis. Nevertheless, further investigations are needed to answer this question.  

This is the first model of action of pro-aggregating peptides taking in account the 

presence of surfaces (see Figure 5.3). This molecular mimicry is mostly sequence independent 

and could have an effect on other proteins that aggregates in highly β-sheet structures in 

presence of surfaces (some monoclonal antibodies, IAPP, Aβ peptide…). Conversely, we 

propose that the peptides that bind to surfaces in alpha-helical conformation could be able to 

prevent protein aggregation by covering the surface in a conformation which would not be 

able to stabilize proteins in high β-sheet content. 
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Figure 5.3: Model of peptide action on insulin aggregation lag-time: examples of the LVEALYL and 
LVAELYL peptides.  

 A question that remains after this study is the peptide/insulin interaction. For the wild 

type peptide, the peptide interaction with insulin can be similar to what Sawaya et al.
79

 and 

Ivanova et al.
48

, with antiparallel β-sheet interaction of the LVEALYL sequence (see Figure 

5.4, case 1). Nevertheless, for mutant peptides, the sequence exposed to insulin is different. It 

can be proposed that insulin interact in antiparallel (Fig. 5.4 case 2) or parallel β-sheets (not 

shown), involving the LVEALYL sequence. It can also be proposed that the interaction 

involves the SLYQLENY sequence, in antiparallel (Fig. 5.4 case 3) or parallel (Fig. 5.4 case 

4) interaction with the peptide. In the both 2 cases, the LVEALYL insulin sequence, which is 

proposed to be the main contributor to fibril formation, is exposed to solvent. As a result, 

further insulin/insulin interactions could be facilitated.  

 

Figure 5.4: Model of peptide/insulin interaction, examples of the LVEALYL and LVAELYL peptides. 
Surfaces are in grey, LVEALYL peptide in red, LVAELYL peptide in blue and insulin molecules in 
black. Insulin is schemed here with LVEALYL and SLYQLENY sequences in β-sheets similar to those 
described in Ivanova et al. 48 
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Abstract 

 Interactions between proteins and material or cellular surfaces are able to trigger 

protein aggregation in vitro and in vivo. The human insulin peptide segment LVEALYL is 

able to accelerate insulin aggregation in the presence of hydrophobic surfaces. We show that 

this peptide needs to be previously adsorbed on a hydrophobic surface to induce insulin 

aggregation. Moreover, the study of different mutant peptides proves that its sequence is less 

important than the secondary structure of the adsorbed peptide on the surface. Indeed, these 

pro-aggregative peptides act by providing stable -sheets to incoming insulin molecules, 

thereby accelerating insulin adsorption locally and facilitating the conformational changes 

required for insulin aggregation. Conversely, a peptide known to form -helices on 

hydrophobic surfaces delays insulin aggregation. 

 

Introduction  
 
 Many protein solutions are prone to aggregation in vitro. This is particularly critical 
for therapeutic proteins because aggregate formation decreases drug activity and can induce 
immunogenic reactions when injected in patients. For instance, the most used protein 
hormone, insulin, can be found in fibrillar form at the site of frequent insulin injections, which 
causes injection amyloidosis [1]. Moreover, the increasing prevalence of human diseases, 
characterized by the presence of large amounts of aggregated proteins, like amyloidosis, 
Alzheimer’s, Parkinson’s and prion diseases, requires mechanistic studies to understand 

protein aggregate formation.  
 The mechanism of protein fibrillation is generally modeled in three steps. 1- 
Conformational changes, due to defects in the cellular folding processes or due to an 
abnormal protein environment. 2- Nucleation, during which the misfolded individual proteins 
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are stabilized, mostly by intermolecular interactions, which drives the formation of oligomers. 
Such oligomers can then evolve into stable nuclei. 3- Growth, during which the nuclei will 
grow upon binding of other misfolded proteins, leading to the formation of large fibrils. In 

vivo, the growing step has a major impact on cell survival [2]. 
 Human insulin (HI) has often been used as a model protein in fibrillation studies as it 
is a non-expensive protein which fibrillates rapidly in vitro, particularly at low pH, high 
temperature, high ionic strength and on hydrophobic surfaces [3–5]. In a preceding study [6], 
we have shown that the presence of hydrophobic surfaces is essential for HI fibrillation at pH 
7.3 and 37°C. Such surfaces were assumed to induce the unfolding of HI monomers adsorbed 
on them, but it appears that all three steps, including nucleation and fibril elongation also take 
place on the surface, leading eventually to the release of mature fibrils into solution. 
 Different studies show that the onset of aggregate nucleation can be accelerated by the 
addition of peptides, which present a pro-aggregative activity [7–10]. Such amyloidogenic 
peptides are mostly hydrophobic, have beta-sheet conformation and are capable to fibrillate 
by themselves. They are commonly derived from protein sequences suspected to be involved 
in fibrillation. In 2009, Ivanova et al. [11] showed that a 7 amino-acid peptide sequence, 
present in the B chain of native HI (LVEALYL, residues B11–B17), was able, at sub-
stoichiometric concentrations, to accelerate the nucleation step of human HI at pH 2.5. On the 
other hand, it is known that surface hydrophobicity has an important effect on the HI 
nucleation rate [12] and, given the hydrophobic nature of this peptide, its amyloidogenic 
properties are likely to rely on its interaction with hydrophobic surfaces. We recently 
demonstrated that the LVEALYL peptide-driven acceleration of HI aggregation is strictly 
dependent on the presence of hydrophobic surfaces [6]. 
 In this study, we use mutants of the LVEALYL peptide together with HI to investigate 
the effects of amino acid changes in this sequence on HI aggregation kinetics, protein 
adsorption on hydrophobic surfaces and changes in peptide secondary structure. When 
compared to previous studies measuring the effects of amyloidogenic peptides on HI 
aggregation kinetics, we have introduced two novel and important parameters: first, the 
experiments are done at physiological pH and, second, the effect of material surface 
hydrophobicity is analyzed. Our work suggests that the LVEALYL peptide and mutants 
thereof induce HI aggregation only if they are previously adsorbed on the material surface. 
Moreover, it appears that their primary sequence is less important than their ability to stably 
adsorb in beta-structure on the surface. 
 

Materials and Methods 
 

Chemicals 

 If not otherwise stated, all chemicals were purchased from Sigma-Aldrich. 
Experiments were conducted in TBS (25 mM TRIS-HCl, pH 7.3, 125 mM NaCl and 2 mM 
MgCl2). HI (recombinant human HI, expressed in yeast) solutions were prepared at 0.5 
mg.mL-1 (86 µM). All solutions were filtered (0.22 µm) before use. Peptides were purchased 
from Genecust (Luxembourg) and a concentrated stock solution was made at 860 µM in 20 
mM NaOH. 
 
Monitoring of aggregation kinetics 

 HI aggregation assays were conducted as 8 replicates in plastic 96-well microplates. 

Polystyrene (Greiner Bio-One, water contact angle = 85° ± 4.7), or PEO-coated, (Corning 

3651 microplate, water contact angle = 3.5° ± 5.8) microplates were used. In fluorescence 

assays, black polystyrene microplates were used (Nunc Nunclon® Δ Surface). The plates were 

covered by plastic sheets, incubated at 37°C and shaken at 1,200 rpm (Heidolph Titramax, 1.5 
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mm vibration orbit). Thioflavin T (ThT, 20μM) fluorescence was directly measured (λex = 450 

nm, λem = 482 nm) in the wells [6]. 
 
Kinetic analysis 

 The aggregation kinetics proceeds in three phases: a lag phase, where the signal is not 
statistically different from the baseline (mean ± standard deviation), a linear growth phase and 
a plateau phase. Experimentally, the lag time was defined by the intercept between the linear 
growth phase and the baseline. The growth rate was defined as the slope of the linear phase 
and the plateau as the maximum value attained. The parameters were calculated on individual 
kinetics corresponding to different replicates, and the given statistics represent the average 
and the standard deviation for each parameter. 
 
Surface seeding using peptides  

 96-well microplates were filled with peptides diluted at 8.6 µM in TBS and incubated 
at 37°C, 1200 rpm for 10 minutes. Wells were then washed once with TBS and filled with HI 
(86 µM) and incubated at 37°C, 1200 rpm. HI aggregation kinetics was monitored using ThT 
as described. 
 
Quantification of adsorbed protein 

 HI (86 µM) and/or peptide solutions (8.6 µM) were incubated in 96-well hydrophobic 
microplates in TBS for 30 minutes at 37°C, 1200 rpm. Wells were then washed with TBS and 
adsorbed peptides and protein were desorbed using Sodium Dodecyl Sulfate (5 %) for 30 
minutes at 37°C and 1200 rpm. The peptide and/or protein concentrations were determined 
using the Bicinchoninic Assay. 
 
Adsorption kinetics and infrared spectroscopy 

 Peptide and HI association and dissociation kinetics were studied on PEG- and C16-
coated surfaces by SPRi as described in Nault et al. [13]. The peptide conformation in 
solution and adsorbed on hydrophobic surfaces was determined by FTIR transmission or 
ATR-FTIR experiments, respectively [13].  
 
Estimation of the hydrophobic contribution to the peptide binding energy to 

hydrophobic surfaces 

 The hydrophobic contribution to the binding energy of 7 amino acid long peptides 
with a hydrophobic surface was calculated for two b-sheet configurations by the following 
formula: 

  (Eq. 1) 

  (Eq. 2) 

DGsol = DGi
1

7

å
   

(Eq. 3) 

where DGi is the free transfer energy of the ith amino acid side chain [14]. Conformation 1 and 
2 correspond to the exposure of even or odd amino acids to solvent, respectively. The third 
calculation corresponds to the hydrophobic contribution of the peptide transfer energy into 
solution, with all amino acids exposed to the solvent. This calculation does not consider the 

DGconf 1 = DGi
1,3,5,7

å - DGi
2,4,6

å

DGconf 2 = DGi
2,4,6

å - DGi
1,3,5,7

å
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contribution of N- and C-termini, which is identical for all peptides and conformations. In the 
interpretation of the data, peptides are assumed to adopt the conformation having the lowest 
interaction energy.  

 

Results 
 

The LVEALYL peptide accelerates HI aggregation kinetics when bound to hydrophobic 

surfaces  

 As shown before [6], the LVEALYL peptide accelerates HI aggregation  kinetics at pH 
7.3 and 37°C, only in the presence of hydrophobic surfaces (polystyrene) but not in the 
presence of PEG-coated surfaces preventing HI binding. The maximum effect is observed at a 
peptide concentration of 8.6 µM, and the lag time is reduced by 66% on average (Table 1). We 
quantified the peptide adsorption on microwells. Table 1 shows that 0.06 µg LVEALYL 
peptide remains adsorbed on the hydrophobic surface after 30 min, corresponding to 4.5 % of 
the initial peptide amount. These minute amounts have a dramatic effect on HI aggregation, as 
shown by the following seeding experiment. Hydrophobic surfaces were pre-incubated for 10 
minutes with peptide, washed and exposed to HI. Peptide pre-adsorption decreases the lag-
time of HI aggregation by 63 % (Table 1). It is noteworthy that preincubating the surface with 
HI does not decrease the lag time (Table 1, line1). Moreover, supplying the solution with 0.06 
µg LVEALYL peptide, does not affect HI aggregation kinetics. The pro-aggregative effect of 
the peptide is therefore due to the adsorbed fraction on the surface. Upon adsorption, but not 
in solution, the LVEALYL peptide presents molecular features that strongly accelerate HI 
binding and aggregation.  
 

The pro-aggregative peptides LVEALYL and LVAELYL have a strong effect on HI 

aggregation and adsorption kinetics 
 The strong effect of the LVEALYL peptide on HI aggregation kinetics prompted us to 
study different peptide variants (Table 1). All experiments were done at the same peptide (8.6 
µM) and HI (86 µM) concentrations. None of the peptides studied here aggregates on its own, 
nor triggers HI aggregation in the presence of PEG-coated surfaces, confirming that the 
kinetic enhancement is dependent on the presence of hydrophobic surfaces. Among the 
peptides studied, the swapped peptide LVAELYL, where the third and fourth amino acid are 
exchanged, exhibits a remarkably short lag time (0.4 h). This peptide binds also strongly to 
hydrophobic surfaces (0.1 µg) and pre-adsorption reduces the lag time of HI aggregation 
down to 2.3 h (Table 1).  
 The binding kinetics of both peptides, alone and in combination with HI, were studied 
by SPRi (Fig. 1A and B). As shown before [13], HI alone binds specifically to hydrophobic 
surfaces, in a biphasic manner. Fast, reversible binding is followed by a slower increase of HI 
adsorption, resulting in the formation of a strongly bound HI pool ([13] and Fig. 1). The 
LVEALYL and LVAELYL peptides alone bind weakly to the hydrophobic surface (Fig. 1A 
and B). Mixing one of the peptides with HI enhances protein adsorption on the hydrophobic 
surface but has no effect on HI adsorption on the hydrophilic surface (Fig. 1A and B). More 
specifically, upon injection of HI with either peptide, there is an increase of the fast 
association component (first minutes of Fig. 1A and B) and of the slow dissociation 
component of the SPRi signal (last 10 min of Fig. 1A and last 20 min of Fig.1B), compared to 
HI alone. The addition of sub-stoichiometric amounts of both peptides to HI therefore induces 
the formation of strongly adsorbed HI on the hydrophobic surface. A direct measurement of 
protein binding to microwell plastic surfaces confirms this result (Table 1). In the presence of 
the swapped peptide, the total protein bound is larger than in the presence of HI or peptide 
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alone. The wild-type peptide also enhances, but to a lesser extent, protein binding on the 
surface (Table 1). 
 

The wild type and the swapped peptides adopt a b-sheet conformation on hydrophobic 

surfaces  

 Infrared spectroscopy is sensitive to protein secondary structure in the amide I band 
and was used to analyze the conformational state of different peptides in solution (FTIR) or 
adsorbed on hydrophobic surfaces (ATR-FTIR). Decomposing the band into peaks shows that 
in solution, the wild type and swapped peptides adopt mostly unstructured conformations 
(Fig. 2A and B, left panels). Indeed, they present a major peak around 1645 cm-1, indicative of 
random coil conformation, which accounts for 37 and 32 % in the wt and swapped peptides’ 

solution spectra, respectively (Table 1S). After 30 min adsorption on hydrophobic surfaces, 
the amide I band of both peptides changes and reveals prominent peaks around 1694, 1680, 
1664, 1648, 1633 and 1622 cm-1 (Fig. 2A and B, right panels). This indicates that the 
conformation of the adsorbed wild type and swapped peptides consists predominantly of 
internal and intermolecular b-sheets and β-turns, the residual unstructured coil contribution 
consisting of 17 and 22 %, respectively (Table 1S).  
 

Characterization of other amyloidogenic peptides: influence of primary and secondary 

structure 

 In order to explain the peptide effect on the HI aggregation rate, a simple model was 
built, assuming that amyloidogenic peptides adopt a b-sheet conformation parallel to the 
material surface, stabilized by intermolecular hydrogen bonds and side chain interactions with 
the hydrophobic surface on one side, and the solvent on the other side. Amino acid side chains 
indeed alternatively point to one side or the other of a b-strand. For a 7 amino acid long 
peptide, two such conformations exist, with odd or even amino acids exposed to solvent. For 
each conformation, the hydrophobic contribution of amino acid side chains to the binding 
energy was summed up using the transfer energies from benzene to water, amino acids 
exposed to solvent contributing positively, while those in contact with the surface contributing 
negatively (Eq. 1 and 2). In this way, one can determine the energetically most favorable 
conformation of a given peptide adsorbed on a hydrophobic surface. For a stable adsorption, 
this energy should be lower than the one for the peptide in solution (Eq. 3). For the LVEALYL 
peptide, the most stable b-sheet conformation exposes the L-E-L-L amino acids towards the 
solution, and the -V-A-Y- amino acids towards the surface (interaction energy = -3.3 kcal.mol-

1). For the LVAELYL peptide, the most stable conformation exposes the -V-E-Y- amino acids 
towards the solution, and the L-A-L-L amino acids towards the surface (interaction energy = -
16.3 kcal.mol-1). This justifies the better stability of the swapped peptide. 
 Two other peptides were studied, SVSASYS and LSASLSL, based on the wild-type 
and the swapped peptides respectively, where the amino acids supposed to face the surface 
were conserved and the ones turned to the solvent replaced by serines (S). For both peptides, 
the most stable conformation exposes hydrophilic S to the solution and hydrophobic amino 
acids to the surface (interaction energy = -8.2 kcal.mol-1 for LSASLSL and -1.1 kcal.mol-1, for 
SVSAVYS). In the HI aggregation assay, the SVSASYS and the LSASLSL peptides behaved 
similarly to their parent peptides (Table 1), showing that the primary sequence exposed to the 
solvent was not critical. The stronger effect of the LSASLSL peptide compared to the 
SVSASYS one is again justified by its higher stability on hydrophobic surfaces. The 
LSASLSL peptide also presents a b-sheet rich conformation when adsorbed on hydrophobic 
surfaces (Fig. 2C and Table 1S), and enhances HI binding on the surface (Fig. 1). 
 To confirm the importance of peptide conformation on the surface, the (LKKLLKL)2 
peptide, known to form a-helices on hydrophobic surfaces [15] was tested. This peptide 
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indeed proved to have a completely different FTIR spectrum in solution or, when adsorbed on 
a hydrophobic surface when compared to the wildtype or swapped peptides (Fig. 2D, left and 
right panels). Its solution spectrum indicates that the (LKKLLKL)2 peptide adopts b-sheet, 
random coil and a-helix conformations (60, 7 and 33 %, respectively; Table 1S). Strikingly, 
when adsorbed on a hydrophobic surface, its ATR-FTIR signature reveals a typical peak 
around 1655 cm-1, which indicates that this peptide retains  a-helical conformation (27%, 
Table 1S). When used in seeding experiments, no HI aggregation was observed for up to 30 h 
(Table 1). We therefore conclude that the conformation of the adsorbed (LKKLLKL)2 peptide 
is not pro-aggregative but rather stabilizes HI. 

Furhtermore a proline residue (P), was introduced to disrupt the wildtype peptide 
secondary structure: LPEALYL, LVEPLYL and SVSPSYS. None of these three peptides 
affect HI aggregation kinetics (Table 1), which consolidates the importance of peptide b-sheet 
conformation on the surface. 
 Replacing the negatively charged glutamate residue (E) by a threonine (T) in the wild 
type or swapped peptide had no effect on the pro-aggregative property of the peptides, 
showing that electrostatic interactions were not determinant (LVTALYL and LVATLYL in 
Table 1). Again, the additional A to P mutation abolished the pro-aggregative effect of these 
peptides (LVTPLYL and LVPTLYL in Table 1).  
 Finally, we analyzed a peptide, ISISISI, exposing a series of three Ser (S) to the 
solution and being adsorbed via four Ile (I) to the hydrophobic surface. This peptide has a 
sequence that is similar to the LKLKLKL peptide, known to form â-sheets on hydrophobic 
surfaces [15–17], and has no common residues with LVEALYL. The HI aggregation lagtime, 
obtained using this peptide in seeding experiments is 0.4 h. This peptide therefore also shows 
a pro-aggregative effect on HI-surface aggregation and confirms that the primary sequence is 
not paramount. 

 

Discussion 
 
 In this study, we show that the LVEALYL peptide, adsorbed on hydrophobic surfaces 
at sub-stoichiometric concentrations, favors HI binding and the formation of HI amyloidal 
fibers. We previously showed that HI adsorbed on hydrophobic surfaces exposes a motive 
containing the LVEALYL peptide, which is recognized by the DnaK/DnaJ bacterial 
chaperones [6]. Combining these two observations indicates how HI amyloidal aggregates 
form on hydrophobic surfaces. HI molecules adsorb and change their conformation, exposing 
the LVEALYL peptide that allows further HI binding in a b-sheet conformation. The 
conformational change induced on HI directly adsorbed on the surface thus propagates to 
incoming HI that binds to adsorbed HI. This mechanism is in accordance with the insulin 
amyloid fiber model proposed by Ivanova et al. [11]. There is some similarity with the prion 
self-replication mechanism, with soluble and adsorbed HI playing the role of PrPC and PrPSc, 
respectively. An important difference is that HI amyloid aggregates released into solution do 
not seed efficiently fiber growth. 
 This work confirms the central role played by the LVEALYL peptide, pointed out by 
Ivanova et al. [11]. We confirm that the SLYQLENY peptide, another HI segment putatively 
involved in the HI amyloid structure, does not stimulate HI aggregation in contact with 
hydrophobic material surfaces. This is reasonable since this peptide is globally hydrophilic 
(DGsol = -12.3 kcal.mol-1) and therefore not likely to adopt a b-sheet conformation on 
hydrophobic surfaces. Interestingly, introducing two mutations so that hydrophobic amino 
acids are placed at even locations (LYQLEAY peptide, DGconf 1 = -13.9 kcal.mol-1) has a mild 
but significant effect on HI aggregation kinetics (lag time = 3.4 h ± 0.1). Our study, although 
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limited to a subset of all possible peptides, strongly suggests that the interaction of HI with the 
adsorbed peptide is not highly sensitive to the primary structure, as long as the adsorbed 
peptide provides a stable b-structure on the surface. Furthermore, the effect of the short 
peptides on insulin aggregation is related to their surface binding energy (minimum -5 
kcal.mol-1) and requires a b-sheet conformation (Fig. 3). The interaction with the peptide-
borne b-structure drives stable HI adsorption by triggering an a to b transition in HI and 
consequent b-sheet formation between neighboring peptides and incoming HI molecules. This 
effect is reminiscent of the effect of silver iodide crystals on super-cooled H2O that induces 
the formation of ice crystals because of a match between the crystal structures of b-AgI and 
ice. It is already known that short peptides are able to influence full-length protein amyloid 
aggregation [7–9]. Nevertheless, the impact of container surface chemistry is not 
systematically taken into account, despite the fact that hydrophobic interfaces are known to be 
able to induce the aggregation of different proteins [5,18]. 
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 Tables 

 

Legend to Table 1 

 

Physico-chemical and pro-aggregative properties of different peptides. The binding 

energy corresponds to the hydrophobic contribution to the minimum interaction energy of the 

peptide bound to the surface, calculated by Eq. 1 or 2 (column 2). For the (LKKLLKL)2 

peptide no interaction energy was calculated since this peptide is in α-helical configuration. 

Lag times were determined from the aggregation kinetics of a 1:10 peptide:protein mixture 

(column 3) and for a surface first exposed to the indicated peptide (8.6 µM) for 10 min, 

washed and then incubated with a fresh HI solution (86 µM) (column 4). Adsorption of 

peptides and peptide plus HI mixtures on hydrophobic surfaces (2 cm
2
) was determined as 

described in Materials and Methods (column 5 and 6).  

 

Table 1 

Peptide sequence 

Interaction 

energy 

(kcal. 

mol
-1

) 

Lag time of HI 

aggregation kinetics 

(h) 

Protein adsorbed on the surface 

after 30 min (µg) 

8.6 µM 

peptide 

mixed 

with 86 

µM HI 

After 10 

min 

seeding 

8.6 µM peptide 

alone 

8.6 µM 

peptide 

mixed with 

86 µM HI 

No peptide   4.4 ± 0.4 4.3 ± 0.4*   0.19 ± 0.01 

LVEALYL - 3.3 1.5 ± 0.2 1.7 ± 0.3 0.06 ± 0.01 0.21 ± 0.01 

LVAELYL -16.3 0.4 ± 0.1 2.3 ± 0.3 0.10 ± 0.01 4.28 ± 0.10 

LSASLSL -8.2 0.5 ± 0.1 2.5 ± 0.3 0.13 ± 0.01 0.25 ± 0.01 

SVSASYS -1.1 2.0 ± 0.1 ND ND ND 

LPEALYL -0.5 4.1 ± 0.3 ND ND ND 

LVEPLYL -1.5 4.2 ± 0.2 ND ND ND 

SVSPSYS -0.7 4.3 ± 0.4 ND ND ND 

LVTALYL -6.1 0.5 ± 0.1 2.7 ± 0.3 0.16 ± 0.04 1.6 ± 0.2 

LVATLYL -6.9 0.6 ± 0.1 1.8 ± 0.3 0.15 ± 0.02 0.5 ± 0.2 

LVTPLYL -7.9 4.3 ± 0.1 ND ND ND 

LVPTLYL -5.1 4.6 ± 0.1 ND ND ND 

ISISISI -10.6  0.4 ± 0.1 ND ND ND 

(LKKLLKL)2 ND > 30 ND ND ND 

       * seeding with 86 µM HI 
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Legend to Figures 

 

Figure 1: SPRi sensorgrams of protein adsorption on hydrophobic surfaces. The protein 

solutions (8.6 µM peptide, 86 µM HI or a mixture of 8.6 µM peptide and 86 µM HI) were 

injected at t=0 min and the association kinetics were monitored for 10 min (A) or 15 min (B). 

The surface was then washed with buffer and the protein dissociation kinetics were monitored 

for 15 min (A) or 20 min (B). The signal represented is the difference between the signal 

recorded on the C16-coated side and the PEG-coated side of the prism. (A) SPRi curves 

obtained with peptides LVEALYL and LSASLSL, (B) SPRi curves obtained with peptide 

LVAELYL. 

  

Figure 2: Amide I band of the LVEALYL (A), LVAELYL (B) and LSASLSL (C) and  

(LKKLLKL)2 peptides in solution (left) and adsorbed on hydrophobic surfaces (right). 
Transmission FTIR spectra were recorded with 8.6 µM peptides in deuterated buffer. For 

ATR-FTIR, peptides were introduced at 8.6 µM in the flow chamber of a hexylmethyl-coated 

silicon prism. After 30 min, the prism surface was washed with buffer and the infrared spectra 

were recorded. Thick line: amide I band after linear baseline correction. Thin lines: 

decomposition of the amide I band into individual peaks. 

 

Figure 3: Effect of different peptides on insulin kinetics. Aggregation kinetics of HI (86 

µM) alone or mixed with 8.6 µM peptide were determined. The nucleation rates k (in the 

presence of peptides) and k0 (in the absence of peptide) were calculated as the inverse of the 

lag time. For each peptide, the k/k0 ratio is plotted as a function of the binding energy of the 

peptide on hydrophobic surfaces in β-strand conformation (Eq. 1 or 2). Circles: peptides 

without proline residue. Squares: peptides containing one proline residue. Data are from table 

1. Lines are hand drawn. 
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Supplementary data 

Table 1S 

 

Table 1S summarizes the decomposition of the FTIR spectra presented in Fig. 2 into 

individual peaks and presents their relative contribution in %. Cells coloured in orange 

represent peaks assigned to β-sheets and β-turns. Cells coloured in yellow represent peaks 

assigned to random coil. Cells coloured in green represent peaks assigned to α-helices (Kong 

and Yu, 2007, Hu et al., 2006). 
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Chapter 6: Discussion and conclusion 
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6.1. Thesis summary 

This thesis aimed at improving our understanding of the aggregation mechanism of 

protein in contact with hydrophobic surfaces. We experimentally focused on the lag-time, 

which corresponds to the formation of aggregation nuclei. To this purpose, we investigated a 

protein of high therapeutic importance, human insulin, which is not expensive, and known to 

aggregate in contact with hydrophobic surfaces in time scales (less than 10 hours) that are 

compatible with daily experimental procedures. We managed to define the different molecular 

events that happen at the interface between hydrophobic materials and fluid phase leading to 

nucleus formation, fibril growth and the release of amyloid fibrils in solution. 

Microwells plates aggregation kinetics monitored by Thioflavin T fluorescence have 

been used for studying nucleation time and fibril growth phase at different temperature and 

under different rotation speeds. Previous works 40,85 showed that insulin aggregation was 

promoted by hydrophobic surfaces and by agitation rates. We proposed a model 88, explaining 

surface-induced insulin aggregation by insulin adsorption on surfaces, inducing an unfolding 

and an organization in amyloid fibers. These fibers were supposed to be released in solution 

after reaching a certain size but no mechanism was proposed to explain the release. 

Furthermore, even if it was observed that insulin adsorption on hydrophobic surfaces induced 

nuclei formation, alternative experimental protocols exist where no agitation is required. 

Delineating the exact proportion of aggregates formed in solution (homogeneous nucleation) 

and on surfaces (heterogeneous nucleation) is thus important. Evidences are brought here that 

nucleation takes place on the hydrophobic surfaces due to a decreased activation energy 

compare to nucleation in solution. Moreover, agitation has two antagonist effects on insulin 

nucleation: (i) it increases protein interactions and solution homogeneity, leading to shorter 

nucleation times, but (ii) it also destabilizes nuclei on the surfaces, leading to longer 

nucleation times. Finally, we showed that the release of completely formed fibrils in solution 

is due to hydrodynamic shear-stress that detaches the fibril grown on the surface adsorbed 

nuclei.  

Nevertheless these initial studies did not give enough information on the nucleation 

molecular mechanism. The development of a protocol for studying the adsorbed protein ThT 

fluorescence microscopy and of surface treatment for Surface Plasmon Resonance imaging, 

coupled to the use of Infrared spectroscopy allowed obtaining adsorption and desorption 

kinetics of insulin on hydrophobic surfaces (SPRi) and extended inter-molecular β-sheets 
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formation detection (Infrared and Fluorescence Microscopy). We observed that insulin first 

accumulates on hydrophobic surfaces, and then forms in 30 to 40 minutes large amounts of 

inter-molecular β-sheets that are positive to ThT fluorescence and can be supposed to be pre-

fibrillar aggregates. These β-sheet structures are strongly adsorbed to the surface and cannot 

be detach easily with buffer flowing, which is consistent with the mechanism of large surface 

fibrils detachment due to hydrodynamic shear-stress observed earlier, and with the fact that 

dynamic light scattering and micro-flow imaging experiments does not detect in solution 

insulin oligomers intermediates between monomeric insulin and 100 nm long fibrils 40. 

Moreover, using these developed techniques, the study of mutants of an insulin 

segment peptide that is known to impact insulin aggregation 
48

 shown that, contrary to what 

was supposed previously, these peptides only act in presence of hydrophobic surfaces where 

they adsorb and enhance the insulin adsorption amounts. Furthermore, it appears that the 

peptide effect on insulin aggregation kinetic is not sequence dependant but requires a peptide 

spontaneous adsorption in β-strand conformation on the surface. That conformation seems to 

increase insulin affinity for the surface and to accelerate insulin unfolding and aggregation 

nuclei formation. These results indicate that any peptide long enough (7 amino-acids or more) 

composed of alternative hydrophobic and neutral hydrophilic residues should be able at sub-

stoichiometric concentrations to highly reduce insulin nucleation time in presence of 

hydrophobic surfaces. Nevertheless, steric effects of biggest amino-acids residues could 

disturb that insulin nucleation time reduction. 

Consequently, in this thesis, different ancient observations on insulin aggregation 

(agitation effect, pro-aggregative peptides actions) have been explained. Moreover, insulin 

adsorption, unfolding kinetics and fibrils growth have been described and a model of insulin 

aggregation in contact of hydrophobic surfaces can be proposed, explaining precedent insulin 

studies and the observations done in this thesis.  

6.2. Surface-induced aggregation mechanism 

Initial model for the mechanism of insulin aggregation in aqueous solutions in contact 

with hydrophobic surfaces was proposed by Sluzky et al 
85

. This model is exposed in Figure 

6.1. According to this model, monomers as well as dimers and hexamers can reversibly 

adsorb on the surface. However, monomers are the least stable species and therefore may 

undergo conformational changes at hydrophobic interfaces. The partially unfolded monomers 

are then released in bulk solution, and can either refold to the native conformation (most 
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likely event) or combine with other unfolded monomers, initiating nucleation. Once a critical 

size is reached, the nuclei have sufficient surface area for stability and can start reacting with 

native molecules. The slow formation of stable nuclei would explain the lag phase observed in 

insulin fibrillation experiments, and the fast insulin depletion following the formation of 

stable nuclei would imply that native molecules participate in the final aggregation steps. 

Nevertheless, in this model, the nuclei assemble and grow in solution. But, seeding 

experiments showed (see Chapter 3) that nuclei are not present in solution but are adsorbed on 

the surface. 

A new model was more recently proposed by Ballet et al 
88,105

. This model (see Figure 

6.2) expose that in order to act as catalysts of amyloid fiber formation, hydrophobic surfaces 

have first to be covered with insulin monomers, which allows local increase of unfolded 

insulin concentration. That catalyzes the formation of aggregation nucleus formation. These 

aggregation nuclei catalyze insulin fibril growth on the surface, before their release in 

solution. Consequently, contrary to Sluzky’s model, all the nucleation and fibril growth steps 

takes place on the surface in this model. In my work, different results exposed in precedent 

chapters show that insulin molecules adsorbs rapidly in few minutes on hydrophobic surfaces 

(part 1 in figure 6.2). Then, these monomers partially unfold and slowly acquire β-sheet 

conformation, as seen by Infrared spectroscopy (part 2 in Figure 6.2). The presence on the 

surface of these β structures increases insulin accumulation on the surface and accelerate 

insulin unfolding and α to β transition (part 3 in Figure 6.2). These locally accumulated 

unfolded insulin molecules can interact with each other, leading to large intermolecular β-

sheets formations, positive to ThT fluorescence in 40 to 60 minutes. These structures are 

proposed to be growing fibrils. The mechanism of fibril growth on the surface (part 4 in 

Figure 6.2) is still non-understood. Nevertheless, in chapter 3, I was able to calculate 

activation energy of this fibril growth step. I also demonstrated that fibrils are mechanically 

detached from the surface when they reach a sufficient size (part 5 in Figure 6.2). New fibrils 

can then grow on the liberated surface, until the system reaches steady-state between insulin 

monomers and fibrils.  

In addition, I propose a model of insulin aggregation in contact with hydrophobic 

surfaces in presence of pro-aggregative peptide, see Figure 6.3. Pro-aggregative peptide 

action is explained by that model. Due to their small size and their amino-acid sequence 

properties, peptides can diffuse faster than insulin and adsorbs rapidly in β-strand 

conformation on the surface. Then, similarly to what was observed previously, the presence 
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on the surface of β structures increases insulin affinity for the surface and accelerate insulin α 

to β transition. This faster local accumulation of unfolded insulin leads to faster aggregation 

nuclei formation, which is the major pro-aggregative peptide effect observed in that study. 
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Figure 6.1: Schematic representation of the proposed mechanism of insulin aggregation on the 

teflon-water interface proposed by Sluzky et al. 

(Figure modified from Sluzky et al. 85) 

Figure 6.2: Schematic representation of the proposed mechanism of insulin aggregation 
on hydrophobic surfaces as proposed by Ballet et al.105 
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Figure 6.3: Schematic representation of the proposed mechanism of pro-aggregative 
peptides on insulin aggregation on hydrophobic surfaces proposed in this thesis. 

 

6.3. Thesis discussion 

A weakness of our strategy could be the difference in surface chemistry used in the 

different kinds of experiments. Aggregation kinetics were indeed measured on microwell 

plastic surfaces. SPRi, fluorescence in microscopy and ATR-FTIR were measured on C16 

alkyl-thiol, Dimethyl dichlorosilane and Phenyl dimethyl methoxysilane self-assembled 

monolayers. Nevertheless, despite the differences between the surfaces, protein accumulation 

and the presence of a strongly bound insulin fraction are always observed. Moreover, we 

observed that replacing dimethyl-dichloro silane by phenyldimethylmethoxysilane in 

microscopy experiments gives similar results. The same observation is done for C16 alkyl-

thiol or C8 alkyl-thiol treated surface in SPRi. In microwell plates, the use of plates from 

different producers and of different composition does not change significantly the insulin 

aggregation kinetic. Moreover, Sluzky et al. 
40,85

 performed experiments in presence of 

chemically different hydrophobic surfaces (water-air, teflon, polypropylene, surfacil 

siliconized glass). Changes in nucleation time and fibril growth characteristic time were 

observed, but the global shape of aggregation kinetics remained similar. Consequently, we 

can be confident that, as long as surface is hydrophobic enough (contact angle > 100°), the 

insulin aggregation mechanisms are not significantly changed.  

An unexplained observation is the absence at pH 7 of pro-aggregative activity of 

mutant peptides LVKALYL and LVOALYL, where the negatively charged glutamate (E) 
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residue is replaced by a positively charged residue of similar size. According to our sequence 

independent model, the LVKALYL and LVOALYL peptides should have similar effect than 

the LVEALYL peptide. Further work is needed to understand why the charge of that residue 

is important in this case. One possibility could be that the charged glutamate residue present 

on the insulin segment could electrostatically interacts with the peptide. Nevertheless, at pH 

2.5, the glutamate residue is not charged whereas the LVEALYL peptide stimulates insulin 

aggregation, as at pH 7. The effects of these two mutated peptides on insulin aggregation at 

pH 2.5 should be studied for a better understanding. Moreover, the LVTALYL peptide, where 

E residue is replaced by a neutral residue is extremely efficient, at both pH 7 and pH 2.5. But 

as explained in the precedent chapters, this is not comparable as the T residue is less 

hydrophilic than the charged E residue, which changes the most energetically conformation of 

the peptide on hydrophobic surface. The replacement of the E residue for a neutral polar 

residue, like serine (S) or asparagine (N) (forming peptides LVSALYL and LVNALYL 

respectively) should give more information on the importance of that charge. Other tested 

peptides could already give information on the importance of that residue. The SVSASYS 

peptide presents pro-aggregative activity similar to that of the LVEALYL peptide. It can 

consequently be anticipated that the LVSALYL peptide would also present a similar pro-

aggregative activity. In conclusion, the effect of the charge on the third position of peptide 

sequence is yet not fully understood, but neutral or negatively charged residue seems to 

conserve the peptide pro-aggregative activity, whereas positively charged residue seems to 

prevent it. Molecular dynamics of surface/peptide and protein/peptide interactions could give 

information on that issue. 

6.4. Future directions 

The main goal of this research project was to understand the molecular mechanisms of 

surface-induced protein aggregation, in order to propose ways to better protein stability. We 

observed that peptides adsorbing in β-strand on hydrophobic surfaces are able to enhance 

insulin aggregation. We propose that peptides able to absorb in α-helix conformation on the 

surface may inhibit insulin aggregation induced by surfaces. For instance, the α-helical 

peptide LKKLLKLLKKLLKL is shown to adsorbs on hydrophobic surfaces 
114,115

. Its 

adsorption on hydrophobic surfaces may delay insulin aggregation and inhibit the different 

phenomena. This could be observed by SPRi, FTIR and fluorescence microscopy. This 

peptide is positively charged, but a negatively charged peptide like LEELLELLEELLEL, or 

neutral peptide like LSSLLSLLSSLLSL may also be α-helical and adsorb on hydrophobic 
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surfaces. These could be used as a general protein stabilizing agent acting at sub-

stoichiometric concentrations. Such result could be of high interest for the stabilization of 

therapeutic protein.  

This study was done using hydrophobic surfaces. Nevertheless, it is known that insulin 

aggregation can be enhanced by other surfaces, particularly by amine-coated surfaces 
116

. 

Other proteins, like antibodies and amyloid β, can also present similar aggregation 

enhancement in presence of amine surfaces and other charged surfaces 
117

. On all these 

surfaces, aggregation mechanism could be similar to what is observed in this study: (i) protein 

accumulation on the surface due to interactions between charges on the protein and charges 

on the surface, (ii) protein partial unfolding involved by charges interactions between surface 

and proteins, (iii) unfolded proteins interactions leading to aggregation nucleus formation and 

(iv) fibril growth on the surface, followed by large fibril detachment due to agitation. 

Nevertheless, on charged surfaces, the peptides studied so far should have hardly any effect 

on insulin aggregation kinetic, as their adsorption and their conformation on the surface 

should be highly different from what is observed on hydrophobic surfaces. We plan to study, 

using amine-coated microwells plates provided by Becton-Dickinson. Results obtained with 

these surfaces should give important information on the generalization possibilities of our 

model for various surfaces chemistries. This should require the design of peptides that may 

adsorb on charged surfaces in β-strands. ESESESE or DSDSDSD peptides could be proposed 

as peptides that could accelerate insulin aggregation for negatively charged surfaces, and 

KSKSKSK peptide could be proposed for positively charged surfaces. 

Furthermore, it appears that insulin adsorption was increased in presence of pro-

aggregative peptide. This adsorption effect seems to be increased when using peptide with 

higher pro-aggregative effects. It can be supposed that an anti-aggregative peptide should 

have the opposite effect, reducing the insulin adsorption on the surface. This could be of great 

interest in protein stability studies. For instance, one could prepare surfaces exposing a large 

number of different peptides. These “peptide microarrays” could be incubated with a protein 

solution of interest to test whether some peptides induce protein aggregation. In addition, 

SPRi measurements and ThT fluorescence microscopy could be used to determine the effect 

of immobilized peptide on protein affinity for the surface and on extended β-sheets formation. 

That could facilitate and accelerate the determination of stabilizing peptides and of protein 

sequences involved in protein aggregation. Moreover, pre-filled syringes and insulin pump 

delivery systems could be improved by the grafting of anti-aggregative peptide in the chamber 
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and the tubing. Insulin and other therapeutic solutions stabilities could be improved thanks to 

the development of such techniques. 

Some data are still missing for a complete understanding of protein induced insulin 

aggregation. We proposed that some peptides induce fast insulin aggregation nuclei, due to 

their β-sheet conformation on the surface. But no information was obtained about the 

presence of the peptide in the nuclei structure at the surface or inside the final protein fibril. 

Peptides with the tyrosine (Y) to tryptophan (W) (Y à W) mutation have been tried, as 

tryptophan presents an easily detectable fluorescence which is sensitive to its environment. 

Since insulin does not contain any tryptophan residue, insulin/peptide ratio in precipitated 

insulin fibrils or on the surface could be quantified with a tryptophan mutated peptide. But it 

appears that aromatic residues decreased the pro-aggregative peptide effect, probably due to 

steric effects, reducing the interest of tryptophan mutated peptides. Another way to determine 

the proportion of peptide/insulin on the surface could be to use mass spectrometry. 

Furthermore, after a buffer wash of the surface to detach all weakly bound compounds, a 

coupling agent could covalently link proteins and peptides that are spatially close. Analyzing 

the complexes formed would shed light on the composition and arrangement of aggregation 

nuclei.  

Another limitation of our observations is that in SPRi, ATR-FTIR and fluorescence 

microscopy, due to the low experimental flow rate, hydrodynamic shear-stress on fibrils 

growing on the surface is considerably reduced, compare to microwells plate aggregation 

experiments. Moreover, in these experiments, temperature was decreased to room temperature 

compare to microwells plate aggregation experiments (37°C). Consequently, aggregation 

kinetics are slow down due to the decreased temperature, and fibrils growing on the surface 

cannot be detached from the surface due to low shear-stress. This results in mass 

accumulation and ThT fluorescence on the surface which rapidly reaches a plateau (Fig. 8A of 

article in chapter 4). No aggregates were detected in the collected solution at the outlet. The 

leak of released insulin aggregates limits the observations to surface events. Nevertheless, 

temperature control could be easily added in these three techniques, and predicted effects of 

temperature on the insulin nucleation (faster α to β transition) and fibril growth (faster ThT 

fluorescence apparition on the surface) could be measured. But due to limited flow rate 

acceptable in flow chambers, no easy adaptation can be done to increase the shear-stress in 

these experiments to values comparable to that reached in microwells plate aggregation 

experiments. 
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Insulin is not the sole therapeutic protein that forms amyloid fibrils. Some monoclonal 

antibodies, IAPP (islet amyloid peptide or amylin), calcitonine and some other proteins of 

therapeutic interest form amyloid fibers in presence of hydrophobic surfaces. According to 

our sequence non-specific model, the action of pro-aggregative peptides, like the LVEALYL 

peptide and mutants should be conserved for these proteins. This has to be tested. Moreover, 

if an α-helix peptide is found to delay insulin aggregation, its effect should be conserved for 

other proteins, which could be of great interest in pharmaceutical research. 

It must be noted that some peptides aggregates in α-helix conformation, contrary to the 

proteins forming amyloid fibrils which are composed mostly of β-sheets. For instance, in the 

presence of the helix-inducing agent TFE (Trifluoroethanol) the tau protein is known to be 

able to aggregate in vitro in an α-helix rich conformation and to form Paired Helical 

Filaments (PHFs) 
118,119

. It should be interesting to study whereas material surfaces and 

specific peptides are also able to induce that α-helix rich aggregation. 

Our results can be of great interest in pharmaceutics of protein drug solutions in 

general and type 1 diabetes mellitus insulin therapy in particular. Indeed, new techniques of 

protein stabilization and protein/surface interaction study may be developed based on this 

work. Moreover, in medicine, the importance of surfaces in protein aggregation is often 

neglected. Considering that the extracellular matrix can be considered as a material surface 

which is generally composed of hydrophobic compounds, it can be hypothesized that taking 

in account the protein/extracellular matrix interactions could leads to new therapeutics 

development against some diseases like Alzheimer, prion diseases and amyloidosis. 
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DnaK Prevents Human Insulin Amyloid Fiber Formation on
Hydrophobic Surfaces
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ABSTRACT: We have developed a multiwell-based protein aggregation
assay to study the kinetics of insulin adsorption and aggregation on
hydrophobic surfaces and to investigate the molecular mechanisms involved.
Protein−surface interaction progresses in two phases: (1) a lag phase during
which proteins adsorb and prefibrillar aggregates form on the material surface
and (2) a growth phase during which amyloid fibers form and then are
progressively released into solution. We studied the effect of three bacterial
chaperones, DnaK, DnaJ, and ClpB, on insulin aggregation kinetics. In the
presence of ATP, the simultaneous presence of DnaK, DnaJ, and ClpB allows
good protection of insulin against aggregation. In the absence of ATP, DnaK
alone is able to prevent insulin aggregation. Furthermore, DnaK binds to
insulin adsorbed on hydrophobic surfaces. This process is slowed in the
presence of ATP and can be enhanced by the cochaperone DnaJ. The peptide LVEALYL, derived from the insulin B chain, is
known to promote fast aggregation in a concentration- and pH-dependent manner in solution. We show that it also shortens the
lag phase for insulin aggregation on hydrophobic surfaces. As this peptide is also a known DnaK substrate, our data indicate that
the peptide and the chaperone might compete for a common site during the process of insulin aggregation on hydrophobic
surfaces.

A dsorption of protein on material surfaces is of widespread
importance in fields like cellular biology, pharmacology,

and medicine. It can be quantitatively measured either
biochemically after desorption or in situ by sensitive biophysical
methods, like QCM-D or surface plasmon resonance (SPR).
Protein adsorption is accompanied by conformational changes
upon contact with the material surface, leading sometimes to
protein aggregation. It is not easy to monitor these conforma-
tional changes on the material in a fast, convenient, and
preferentially multiplexed assay. Albeit greatly sensitive,
techniques like attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FTIR) are not readily available and
do not provide unambiguous information about the nature of
the changes in protein folding.
Within cells, chaperones constitute a set of proteins whose

function is to check the folding state of other proteins, and to
refold them,1−3 using ATP hydrolysis energy to drive protein
disaggregation and renaturation. In Escherichia coli, Bukau and
co-workers identified DnaK, DnaJ, and ClpB as the minimum
set of bacterial chaperones needed to help the cell recover from
a heat shock.4 DnaK is an ATPase specific for unfolded hydro-
phobic amino acid stretches. DnaJ forms a complex with DnaK
and stimulates DnaK ATPase activity.5 ClpB is a hexameric
ATPase that interacts with aggregated proteins and disaggre-
gates them, in cooperation with DnaK and DnaJ.4,6,7

Furthermore, in E. coli, ∼250 proteins are disaggregated and

refolded when DnaK, DnaJ, and ClpB are present, which
supports the broadness of their protein substrates.4 Chaperones
detect general conformational unfolding characteristics, rather
than specific targets. In addition, many chaperones work in
complexes; hence, chaperone combination is likely to enhance
the recognition process. We therefore hypothesized that this
protein family could provide new sensors for protein
conformational changes at material surfaces.
We chose human insulin (HI) as a model because its

aggregation has been studied under different physicochemical
conditions.8−10 It was shown that HI aggregation is
formulation-dependent and that insulin undoubtedly changes
its conformation upon binding to hydrophobic surfaces, leading
to the formation and release of amyloid fiber aggregates.11

From a concentration dependence study, Sluzky et al. deduced
that the HI monomer was the molecular species leading to
aggregation.9 Using recombinant chaperones, we observe that
different sets of them are able to prevent HI aggregation by
binding preferentially to surface-bound insulin. Rüdiger et al.12

have shown that DnaK binds to the insulin B chain peptide
SHLVEALYLVCGER, and Ivanova et al.13 demonstrated that
the shorter LVEALYL peptide is the minimal sequence that can

Received: September 19, 2011
Revised: January 23, 2012
Published: February 21, 2012

Article

pubs.acs.org/biochemistry

© 2012 American Chemical Society 2172 dx.doi.org/10.1021/bi201457u | Biochemistry 2012, 51, 2172−2180



accelerate the lag time of insulin fiber formation at acidic pH in
a concentration-dependent manner. We show that this same
peptide also accelerates the lag time of insulin aggregation on
hydrophobic surfaces and that bacterial chaperones are able to
counterbalance this effect.

■ EXPERIMENTAL PROCEDURES

If not otherwise stated, all chemicals were purchased from
Sigma-Aldrich. Experiments were conducted in TBS [25 mM
Tris-HCl (pH 7.4) and 125 mM NaCl]. HI (recombinant,
expressed in yeast) solutions were prepared at 0.5 mg/mL
(86 μM). All solutions were filtered (0.22 μm) before being
used. The LVEALYL peptide was purchased from Genecust
(Luxembourg) and dissolved in 20 mM NaOH at a
concentration of 4.3 mM.
Bacterial Chaperone Preparation and Activity Assay.

The bacterial strains used to produce DnaK (Hsp70), ClpB
(Hsp100), and DnaJ (Hsp40) were kindly provided by B.
Bukau and A. Mogk (Zentrum für Molekulare Biologie
Heidelberg, Universitaẗ Heidelberg, Heidelberg, Germany).
His-tagged ClpB and DnaJ were purified using nickel-
nitrilotriacetic acid (Ni-NTA) metal affinity chromatography
columns (Qiagen) according to the manufacturer's instructions.
DnaK was purified as described by Cegielska and Georgopo-
lous14 and McCarty and Walker,15 with minor modifications by
Buchberger et al.16 The refolding activity of the purified pro-
teins was controlled using the malate dehydrogenase (MDH)
renaturation assay.6,17 The three proteins and ATP were
essential for the refolding activity (2 ± 0.3 nM min−1 at 1 μM
DnaK, 0.2 μM DnaJ, and 1 μM ClpB).
Insulin Aggregation Assays. HI aggregation assays were

conducted as eight replicates in plastic 96-well microplates.
Polystyrene (Greiner Bio-One, contact angle of 85 ± 4.7°) or
PEO-coated (Corning, contact angle of 3.5 ± 5.8°) microplates
were used. In fluorescence assays, black polystyrene microplates
were used (Nunc Nunclon Δ Surface). The plates were covered
by plastic sheets, incubated at 37 °C, and shaken at 1200 rpm
(Heidolph Titramax, 1.5 mm vibration orbit). At each time
point, the solution was pipetted out of the microwells. Part of
the solution was filtered to remove aggregated HI (100 nm
cutoff). The wells were washed twice with 300 μL of TBS. The
adsorbed HI fraction was desorbed with 100 μL of 5% SDS for
a 1 h agitation at 37 °C. Negligible protein material remained
on the surface thereafter. The total amounts of HI in solution
(nonfiltered), soluble HI, and HI adsorbed in the wells were
determined using the bicinchoninic acid (BCA) assay.18−21 In
addition, turbidity (λ = 600 nm) or thioflavin T (ThT, 20 or
50 μM) fluorescence was directly measured in the wells. Free
and bound forms of ThT were measured at a λex of 342 nm and
a λem of 430 nm and at a λex of 450 nm and a λem of 482 nm,
respectively,22 with a 5 nm excitation and emission slit (Tecan
Infinite M1000).
Kinetic Analysis. The aggregation kinetics proceed in three

phases: a lag phase, where the signal was not statistically
different from the baseline (mean ± standard deviation), a
linear growth phase, and a plateau phase. Experimentally, the
lag time was defined by the intercept between the linear growth
phase and the baseline. The growth rate was defined as the
slope of the linear phase and the plateau as the maximal value
attained. The parameters were calculated on individual kinetics
corresponding to different samples, and the given statistics
represent the average and standard deviation for each
parameter.

Protection of Insulin Aggregation by Bacterial
Chaperones. HI aggregation was monitored by turbidity or
ThT fluorescence and confirmed by protein quantification after
filtration at the end of the experiment. The TBS buffer solution
was supplemented with 2 mM MgCl2 (TBS-M), because Mg2+

ions are needed for the chaperone ATPase activity. Magnesium
itself does not affect HI aggregation. All chaperones were stable
in this buffer. The efficiency of chaperone protection was
expressed as the lag time before the onset of HI aggregation. As
Zn2+ influences the equilibrium of HI hexamer formation,23

we tested the effect of Zn2+ addition (up to 10 μM) on HI
aggregation: neither HI aggregation kinetics nor DnaK
protection was modified.

Chaperone Binding Assays. Polystyrene microplates [96
wells, Greiner enzyme-linked immunosorbent assay (ELISA)]
were incubated at 37 °C and 1200 rpm with insulin for various
amounts of time and blocked with 10 mg/mL bovine serum
albumin (BSA) in TBS-M (blocking buffer) for 30 min at room
temperature (RT) with shaking (1000 rpm). DnaK, DnaJ, or
both (diluted in blocking buffer) were then added for 30 min
(RT) with shaking (1000 rpm). The plate was blocked again
with BSA for 30 min (RT) with shaking (1000 rpm).
For DnaK detection, a mouse anti-DnaK (E. coli) mono-

clonal antibody (8E2/2; diluted 1:2500 in blocking buffer) was
used, and for DnaJ detection, a mouse anti-penta-His antibody
(diluted 1:1000 in blocking buffer) was added to each well and
the mixture incubated for 15 min (RT) with shaking (1000
rpm). Finally, a goat horseradish peroxidase-conjugated anti-
mouse antibody (diluted 1:2500 in blocking buffer) was added
to each well and the mixture incubated for 15 min (RT) with
shaking (1000 rpm). Wells were then washed three times with
200 μL of TBS, and 200 μL of ECL substrate solution was
added per well. Chemiluminescence signals were immediately
recorded using a TriStar LB 941 microplate multimode
reader.
To relate luminescence values to the amount of DnaK

adsorbed, a calibration experiment was conducted in parallel.
Increasing amounts of DnaK were incubated in 96-well
polystyrene microplates (Greiner ELISA). The amounts of
adsorbed DnaK were determined using the NanoOrange assay,
according to the manufacturer’s instructions. An ELISA was
performed on the adsorbed DnaK as described previously. A
calibration curve was then obtained that related luminescence
values to the amount of adsorbed DnaK.

■ RESULTS

HI Aggregation in the Presence of Hydrophobic
Surfaces. To study the mechanisms of insulin aggregation
on hydrophobic surfaces, we developed a HI aggregation assay
using commercial hydrophilic or hydrophobic 96-well plates, to
allow rapid screening of different experimental conditions. A HI
solution was placed in the presence of hydrophilic or
hydrophobic plastic surfaces and agitated at 37 °C. At the
indicated times, the solution was recovered and filtered to
separate the soluble and aggregated HI pools. The microwell
surface was then washed, and adsorbed HI was desorbed
with SDS. These three protein pools were then quantified
using the BCA assay. In the presence of hydrophilic surfaces,
HI remained soluble for several days and less than 1 μg of
protein was adsorbed on the hydrophilic microwell surfaces
(data not shown). In contrast, in the presence of hydrophobic
surfaces, the concentration of soluble HI remained constant
for ∼4 h (lag phase), after which the amount decreased
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sharply to trace amounts (Figure 1A). The amount of aggre-
gated HI in solution increased in parallel at a similar rate.

The amount of HI adsorbed on hydrophobic surfaces increased
during the aggregation process, reaching a maximum amount
of ∼40 μg.
Amyloidal aggregates are characterized by the formation of

intermolecular β-sheets, which can be probed by the binding of
thioflavin T (ThT), resulting in a characteristic fluorescence
signal. Both the aggregated and the adsorbed HI pools were
stained with ThT, and the fluorescence intensity per microgram
of protein was the same in both pools (Figure 1B). The ThT
fluorescence is therefore a convenient method for monitoring
the appearance of HI aggregates. In the following experiments,
we defined the lag time as the intercept between the linear
growth phase and the baseline of the ThT fluorescence kinetics.
Depending on HI preparations, the lag time varied from 2 to
4 h. Within an experiment, using the same HI preparation in
the same multiwell plate, the lag time was also variable from
well to well, which explains the variation observed in the
aggregation kinetics. HI aggregates exhibited elongated fiberlike
rods with a diameter of 5−10 nm and a length of 50−100 nm
when imaged using electron microscopy (data not shown).
Their morphology and dimensions are similar to those of the
fibers obtained after incubation of insulin at pH 2 and an
elevated temperature.24,25

Effect of Bacterial Chaperones on Insulin Aggrega-
tion. We then studied whether bacterial chaperones could have
an effect on the kinetics of HI aggregation. In the presence of
1 mM ATP, the simultaneous presence of the three chaperones
delayed HI aggregation as shown by the 9-fold increase in the

aggregation lag time (Figure 2A). DnaK alone slightly increased
the lag time, whereas DnaJ was without effect. The combined

presence of DnaK and DnaJ significantly increased the lag time,
to a level similar to that obtained in the presence of ClpB alone.
Moreover, the combined presence of ClpB with DnaK, but not
DnaJ, further delayed HI aggregation in the presence of 1 mM
ATP. When the concentrations of DnaJ and ClpB were
increased (++ vs +), the lag time further increased. These
results show that HI undergoes conformational changes during
the aggregation process that are recognized and could possibly
be repaired by a minimal set of bacterial chaperones. Never-
theless, incubation of 150 μg of final amyloidal insulin
aggregates with DnaK, DnaJ, and ClpB for 24 h does not
allow recovery of more than 1 μg of soluble insulin (data not
shown). This suggests that the three chaperones do not
dissociate final aggregates but more likely block intermediate
aggregation states.
Surprisingly, in the absence of ATP, no protein aggregation

was observed whenever DnaK was present (Figure 2B). The
effect was specific for DnaK because , in the absence of ATP,
the presence of the other chaperones alone or in combination
did not significantly change the HI aggregation kinetics.
Addition of comparable and larger amounts of BSA, which is
routinely used as a blocking agent to cover material surfaces
and works by competitive adsorption, had no effect (data not
shown). The peculiar role of DnaK is further investigated in the
next section.

Prevention of Insulin Aggregation by DnaK in the
Absence of ATP. In the presence of 1 mM ATPγS, a

Figure 1. Kinetics of human insulin adsorption and aggregation in
hydrophobic microplates. (A) Amount of soluble (●), aggregated
(▲), and adsorbed (■) HI after the indicated incubation time. (B)
Amyloid fiber-bound ThT fluorescence in solution (▲) and on the
surface (■) plotted as a function of incubation time. The lag time as
the intercept between the growth rate () and the baseline is denoted
with an arrow. Other curves are hand-drawn and provided as a guide
for the eye.

Figure 2. Effect of bacterial chaperones on human insulin aggregation.
A HI solution was agitated in a hydrophobic microplate, in the
presence of DnaK (0.3 μM), DnaJ [0.06 μM (+) and 0.3 μM (++)],
and ClpB [0.3 μM (+) and 0.6 μM (++)] as indicated (A) in the
presence of 1 mM ATP or (B) in the absence of ATP. The aggregation
kinetics were monitored by turbidity, and the lag times were
determined as explained in Experimental Procedures.
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nonhydrolyzable form of ATP, DnaK did not prevent HI
aggregation (Figure 3A), which showed that no ATP hydrolysis

took place on the HI substrate. Furthermore, addition of 1 mM
ADP also abolished the protective effect of DnaK on HI
aggregation. The similar effect obtained by the presence of
ADP, ATP, or a nonhydrolyzable nucleotide suggested that the
molecular species, active at preventing the formation of HI
amyloidal fibers, was the nucleotide-free DnaKempty−HI
complex. This fits well with the biochemical properties of this
protein because in the presence of ATP, DnaK indeed has a
decreased affinity for its protein substrate26,27 and hence could
be less protective against aggregation. A series of HI aggre-
gation experiments were performed in the presence of DnaK at
different ATP concentrations ranging from 1 μM to 5 mM. The
HI aggregation rate was used to measure the effect of added
ATP on DnaK (Figure 3B). An apparent affinity of 2 μM was
determined, which fits with the reported values of the affinity of
DnaK for ATP.28 Furthermore, in the presence of ATP, DnaJ

increased the protective effect of DnaK on HI aggregation
(Figure 3C). It is indeed known that the DnaK−DnaJ complex
has a higher affinity for the protein substrate than DnaK
alone.29,30

Several lines of evidence indicate that DnaK prevented early
phases of HI aggregation. First, in the continuous presence of
DnaK, the amount of HI that adsorbed on hydrophobic
surfaces remained small (Figure 4A) and ThT did not stain the
adsorbed HI (Figure 4B, vs Figure 1B). Second, in two-stage
experiments, when the protective effect of DnaK was released
after 5 h by addition of ATP, HI aggregation took place
after the same lag time observed in the absence of DnaK
(Figure 4C). Similarly, when DnaK was added after incubation
for 1 h, the lag time was reduced by 1 h after the addition of
ATP. This showed that, as long as it was present in a
nucleotide-free form, DnaK prevented the formation of amyloid
aggregates on hydrophobic surfaces. To confirm the early effect
of DnaK, a constant amount of DnaK was added at different
times after the beginning of the incubation. After a 1 h pre-
incubation, DnaK considerably slowed HI aggregation kinetics,
but after 2 h, it had no significant effect, although aggregation
had not yet started (Figure 4D).

DnaK Binds to HI Adsorbed on Hydrophobic Surfaces.
We then determined the minimal amount of DnaK that should
be added as a function of preincubation time to prevent HI
aggregation for at least 18 h (Figure 5). This amount increased
very rapidly without exceeding the amount of HI adsorbed on
the surface, on a molar ratio basis.
Because insulin aggregates are present both on the plastic

surface and in solution, we studied the binding of DnaK to the
HI pool adsorbed on the surface and to HI aggregates in
suspensions. BCA and sodium dodecyl sulfate−polyacrylamide
gel electrophoresis (SDS−PAGE) analysis were combined to
quantify the amount of DnaK and HI adsorbed on the surface
or to aggregates in suspension (Table 1). For these
experiments, we used an experimental setup similar to that of
Sluzky et al.8 SurfaSil-treated borosilicate beads were incubated
with HI under agitation overnight. After the beads had been
washed, 20 ± 2 μg of HI remained adsorbed to the beads. The
HI solution fully aggregated, and 150 μg of HI aggregates was
recovered by centrifugation and washed.
In a first set of experiments, the adsorbed HI pool was

incubated with 8 μg of DnaK, or buffer alone, in the presence
or absence of ATP, for 8 min, and the amount of insulin and
DnaK adsorbed on the beads after the incubation was deter-
mined. The material released in solution after the incubation
was also analyzed by centrifugation, to separate soluble and
aggregated proteins, and the amount of DnaK associated with
the aggregates was also quantified. In the absence of DnaK,
35% of the initially adsorbed HI detached from the bead
surfaces (7 μg/20 μg), corresponding to the spontaneous
detachment of HI aggregates from the surface. In the presence
of DnaK, larger amounts of protein, which contained both
DnaK and HI, were released from the surface (15.4 μg +
2.4 μg = 17.8 μg). Under these conditions, 77% of the initially
adsorbed HI detached from the beads (15.4 μg/20 μg). This
material could be recovered by centrifugation, showing that it
contained only HI aggregates. Moreover, an ELISA confirmed
that <0.1 μg of HI could be recovered in soluble form. No
protein renaturation had thus taken place. A large fraction of
DnaK (2.4 μg of 8 μg) cosedimented with the released HI
material, and small but significant amounts of DnaK (0.2 μg)
remained at the bead surface. This strongly suggested that

Figure 3. Nucleotide requirements for DnaK protection of human
insulin aggregation on hydrophobic surfaces. A HI solution was
agitated in a hydrophobic microplate in the presence of the indicated
chaperones and nucleotides. HI aggregation was monitored by optical
density measurements at 600 nm. (A) The HI solution was
supplemented with 1 μM DnaK and either no nucleotide (○) or 1
mM ATP, ADP, or ATPγS (●, ▲, and ■, respectively). (B) The HI
solution was supplemented with 0.3 μM DnaK, and the aggregation
rate is plotted as a function of ATP concentration. (C) The HI
solution was not supplemented with chaperones (◆), supplemented
with 0.3 μM DnaK in the absence of ATP (△) or with 1 mM ATP
(×), or supplemented with 0.3 μM DnaK and 0.06 μM DnaJ with 1
mM ATP (□).
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DnaK detached insulin aggregates from the bead surface,
remaining associated to them. The time course of this process

was ∼20 min (data not shown). In contrast, no DnaK could be
detected on hydrophilic surfaces where similar amounts of HI
had been preadsorbed (data not shown). Qualitatively similar
results were obtained in the presence and absence of ATP.
However, less insulin was detached, and ∼50% of the DnaK
remained bound to insulin aggregates in the presence of 1 mM
ATP.
In a second set of experiments, DnaK (8 μg) was incubated

with HI aggregates that had already been released in solution.
Under these conditions, ∼0.5 μg of DnaK was bound to 150 μg
of a HI aggregate suspension. This shows that DnaK does not
bind efficiently to HI aggregates already present in solution.
DnaK therefore binds specifically to HI adsorbed on hydro-
phobic surfaces.
Making use of the affinity of DnaK for insulin adsorbed on

hydrophobic surfaces, we subsequently designed an assay for
the sensitive detection of aggregated insulin on material
surfaces. Insulin (or BSA as a control) was incubated in the
presence of hydrophobic or hydrophilic surfaces for 1 h. The
adsorbed protein (1−2 μg) was incubated with increasing
amounts of DnaK, in the presence or absence of DnaJ and/or
ATP. After the sample had been gently washed, DnaK was
detected using anti-DnaK antibodies in a chemoluminescence

Figure 4. DnaK prevents the formation of prefibrillar insulin aggregates on hydrophobic surfaces. (A) Time course of adsorption of HI on
hydrophobic surfaces in the presence of 0.3 μM DnaK without ATP (●) compared to the adsorption in the absence of DnaK (○). (B) Time course
of amyloid fiber formation on hydrophobic surfaces in the presence of 0.3 μM DnaK without ATP (●) compared to the aggregation in the absence
of DnaK (○). (C and D) Two-stage experiments. (C) A HI solution was incubated in the presence (filled symbols, b−d) or absence (○, a) of 0.3 μM
DnaK. At the indicated time, 1 mM ATP was added to the DnaK-containing sample (b and c) and the HI solution was further incubated. Bold lines
represent the time during which DnaK protects HI from aggregation. HI aggregation was monitored by turbidity. (D) DnaK (0.3 μM) was added at the
indicated time (Δt) after the beginning of HI agitation in a hydrophobic microplate, and the incubation was further continued for 8 − Δt hours (●). In
comparison, the kinetics of HI aggregation as measured in panel C (a) is shown (○). HI aggregation was monitored by turbidity after 8 h.

Figure 5. Stoichiometry of the interaction of DnaK with insulin
adsorbed on hydrophobic surfaces. A HI solution was agitated in
hydrophobic microplates for the indicated preincubation time. DnaK
was then added at different concentrations, and the HI solution was
further incubated for 18 h. The extent of HI aggregation was
determined by ThT staining. A 2-fold increase in the level of ThT
staining over background was used as a criterion for the onset of HI
aggregation. The minimal amount of DnaK needed to prevent the
onset of HI aggregation is represented as a function of preincubation
time. The amount of adsorbed HI is also represented.
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assay (see Experimental Procedures). In Figure 6A, the amount
of adsorbed DnaK is plotted as a function of the total amount
of DnaK. In the absence of DnaJ, small but significant amounts
of DnaK (26 ng) were bound to insulin adsorbed on
hydrophobic surfaces compared to the amount of DnaK
bound on adsorbed BSA (14 ng). In contrast, almost no DnaK
was recovered when insulin was incubated with hydrophilic
surfaces (data not shown). The amount of DnaK bound to
adsorbed insulin was only slightly reduced in the presence of
1 mM ATP (23 ng). In the presence of DnaJ, much larger
amounts of DnaK were bound to adsorbed HI (372 ng), but
not on adsorbed BSA (27 ng). Addition of ATP reduced the
amount of DnaK binding in the presence of DnaJ to 147 ng. To
study the DnaJ requirement for DnaK binding, the amount of
DnaK was kept constant at 2.5 μg (0.18 μM) and the DnaJ
concentration was increased (Figure 6B). DnaK binding
reached a maximum for amounts of DnaJ larger than 1.28 μg
(0.16 μM), which corresponds to a 1:1 DnaJ:DnaK ratio. These

data show that DnaK specifically interacts with HI adsorbed on
hydrophobic surfaces and that the molecular cochaperone DnaJ
reinforces this binding. The weak binding of DnaK in the
presence of ATP is consistent with its lack of a protective effect
against aggregation.

Competition between the LVEALYL Amyloidogenic
Peptide and Bacterial Chaperones during HI Aggrega-
tion on Hydrophobic Surfaces. Recent studies by Ivanova
et al.13 pinpointed the role of two HI amino acid stretches that
are likely to change extensively their conformation when HI
spontaneously goes from a soluble form to amyloid aggregates
at pH 2 and 60 °C. These sequences are SLYQLENY (A12−19)
and LVEALYL (B11−17). Both contain hydrophobic residues
and are mainly involved in α-helices in the HI monomer. In
amyloid fibers, two LVEALYL stretches from two monomers
are assumed to associate into antiparallel extended β sheets
that tightly interact via their hydrophobic side chains. The
SLYQLENY sequence shows similar properties and also con-
tributes to the formation of fibrillar structures. In this model,
the core of HI amyloid fibers is therefore provided by hydro-
phobic interactions between these polypeptides and stabilized
by the stacking of extended β-sheets. To investigate whether
hydrophobic surfaces drive similar conformational changes, we
studied the effect of the LVEALYL and the SLYQLENY
peptides on HI aggregation kinetics. The SLYQLENY peptide

Table 1. DnaK Binding to HI-Covered Surfaces and HI
Aggregates and LVEALYL Aggregates in Solutiona

fraction

released from beads

adsorbed aggregates soluble

Hydrophobic Surfaces, No DnaK Added

human insulin (μg) 11 ± 2 7 ± 3 <0.1

Hydrophobic Surfaces, with DnaK (8 μg)

human insulin (μg) 4.6 ± 1 15.4 ± 2.5 <0.1

DnaK (μg) 0.2 ± 0.1 2.4 ± 0.6 5.4 ± 0.7

DnaK:HI molar ratio 277 77

Hydrophobic Surfaces, with DnaK (8 μg) and Aggregated Insulin in Solution

human insulin (μg) 150 ± 10

DnaK (μg) 0.5 ± 0.2

Molar ratio (HI:DnaK) 4200

Hydrophobic surfaces, with DnaK (1.5 μg)

LVEALYL (μg) 25

DnaK (μg) 0.5

Molar ratio (peptide:DnaK) 4000
aAcid-washed borosilicate glass beads (diameter of 1 mm) were
siliconized by immersion in SurfaSil (Pierce, 10%, w/w) in acetone
and stabilized by being cured at 100 °C for 1 h. The water contact
angle was measured (DSA100 Krüss) (93.5 ± 3.5°). SurfaSil-treated
beads were incubated with HI in TBS-M buffer overnight. The fully
aggregated HI solution was removed, and the beads were washed three
times with 500 μL of TBS-M. The initial amount of HI adsorbed on
the beads was determined. DnaK was then added, in the presence or
absence of ATP, and the beads were further incubated for 1 h at 37 °C
under agitation. The total protein content and the amount of HI or
DnaK were determined in three fractions: the one adsorbed on the
beads, the aggregated one, and the soluble ones released from the
beads and separated by centrifugation (5000g for 10 min). The total
amount of protein was quantified by the BCA assay; the amount of
soluble HI was quantified by an ELISA (I2018 mouse monoclonal
anti-insulin antibody), and the amount of DnaK was determined using
SDS−PAGE and Coomassie staining. Quantification was performed
with ImageJ. For the interaction of DnaK with the aggregated
LVEALYL peptide, the peptide solution was prepared at 1 mM glycine
buffer (pH 2.5). This solution was incubated in hydrophobic 96-well
plates overnight at 37 °C with agitation (1200 rpm). The resulting
aggregates were centrifuged and washed three times in TBS-M buffer
(pH 7.4) before being resuspended and incubated in TBS-M buffer
containing 1.5 μg of DnaK over 30 min. The DnaK/peptide solution
was then centrifuged and washed three times in TBS-M buffer before
SDS−PAGE analysis.

Figure 6. Amount of DnaK adsorbed on surface-bound HI. A 0.5 mg/mL
insulin or 0.5 mg/mL BSA control solution (×) was agitated for 1 h
in a hydrophobic microplate. After removal of the solution, a DnaK
solution was added. (A) The DnaK solution was not supplemented
with ATP (■), supplemented with 1 mM ATP (□), and supplemented
with DnaJ (0.16 μM) in the presence of 1 mM ATP (○) or in the absence
of ATP (●). The amount of adsorbed DnaK was measured using an
ELISA as described in Experimental Procedures and is represented as a
function of the total amount of DnaK added. (B) A 0.18 μM DnaK
solution supplemented with different amounts of DnaJ was added to
the adsorbed insulin (■) and the adsorbed BSA (□). The amount of
adsorbed DnaK was measured using an ELISA as described in
Experimental Procedures and is represented as a function of the total
amount of DnaJ added. Lines are hand-drawn and provided as a guide
for the eye.
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had no effect on HI aggregation kinetics, whereas the
LVEALYL peptide strongly reduced the lag time in HI
aggregation kinetics at substoichiometric concentrations
relative to HI (Figure 7A). At higher concentrations, the

LVEALYL peptide inhibited the growth of HI amyloidal
aggregates, as reported previously at pH 2.13 The effect of the
LVEALYL peptide was observed only in the presence of
hydrophobic surfaces, the HI solution remaining perfectly
stable in hydrophilic multiwell plates, whatever the peptide
concentration. It should be noted that none of the peptides
alone aggregate in hydrophobic or hydrophilic plates under the
same pH, temperature, and concentration conditions.

Rüdiger et al. showed that the SHLVEALYLVCGER and
CTSICSLYQLENYCN sequences in insulin bind DnaK.12 Both
encompass the aforementioned peptides involved in amyloid
fiber formation (underlined). The same portions of insulin
sequence are likely to be recognized by DnaJ, because it shares
its substrates with DnaK.5 It follows that DnaK should
antagonize the aggregation promoting effects of the LVEALYL
peptide. As shown in Figure 7B, adding 26 μM LVEALYL
peptide reduced the HI aggregation lag time from 2.5 ± 0.2 to
1.1 ± 0.2 h. The addition of 0.3 μM DnaK antagonized the
effect of the LVEALYL peptide, extending the HI aggregation
lag time up to 4.2 ± 0.7 h and slowing aggregation (Figure 7B).
The presence of DnaJ enhanced the effect of DnaK [lag time of
7.8 ± 0.9 h (Figure 7C)]. More DnaK was needed to block HI
aggregation for longer times. Conversely, ∼60 μM LVEALYL
peptide was needed to reduce the lag time to the value obtained
in the absence of DnaK. Moreover, DnaK binds to amyloid
aggregates formed by the LVEALYL peptide alone. Table 1
shows that 0.5 μg of DnaK binds to 25 μg of LVEALYL peptide
aggregates.

■ DISCUSSION

DnaK Recognizes a Conformational Change Occur-
ring on HI Adsorbed on Hydrophobic Surfaces. During
aggregation, three pools of insulin were evidenced in this study:
the soluble insulin pool, the final amyloidal aggregates, and
insulin adsorbed on hydrophobic surfaces. In another article, we
show that the latter pool contains prefibrillar insulin aggregates
that are essential intermediates in the pathway(s) leading to
insulin aggregation. The amount of DnaK needed to block
insulin aggregation supports the view that DnaK binds to a
minor portion of insulin present in the adsorbed insulin pool.
The DnaK concentration (0.3−3 μM) is indeed much lower
than the HI concentration in solution. Thus, DnaK cannot
significantly displace the monomer−dimer−hexamer equilibria
and therefore cannot significantly reduce the HI monomer
concentration, which is the form of HI in solution that
aggregates in the presence of hydrophobic surfaces.9 Because
DnaK weakly interacts with preformed amyloidal aggregates
released in solution, the binding of DnaK to the end product of
the aggregation reaction cannot explain its inhibitory effect
(Table 1). The target of DnaK is therefore to be found at the
material surface. Because the amount of DnaK needed to block
HI aggregation increases during the lag time (Figure 5), we rule
out competitive adsorption at the material surface as the reason
for DnaK inhibition. Moreover, we show that DnaK directly
binds to HI adsorbed on hydrophobic surfaces and to HI
aggregates released from the surface (Figure 6 and Table 1).
We therefore propose that DnaK blocks the formation of HI
amyloid fibers on hydrophobic surfaces, by selective binding to
target sequences in adsorbed HI. One of these targets is likely
to be the hydrophobic LVEALYL peptide, aggregates of which
also bind DnaK (see Table 1 and below).
There is kinetic competition between amyloid fiber growth

and protection by DnaK, which is illustrated well by the effect
of ATP and DnaJ. ATP-loaded DnaK is known to have a lower
affinity for its protein substrate than ADP-loaded DnaK5 and
DnaJ, which stimulates ATP hydrolysis on DnaK and reinforces
its interaction with its substrate. Our results suggest that in the
absence of nucleotides, DnaK binds strongly to adsorbed HI
and DnaJ further stabilizes DnaK binding. When the mean
residence time of DnaK on exposed hydrophobic HI stretches
is sufficiently long, the formation of amyloid fibers is inhibited

Figure 7. Effect of the LVEALYL peptide on HI aggregation kinetics.
(A) A HI solution was agitated in a hydrophobic microplate in the
presence of different amounts of the LVEALYL peptide, and
aggregation was monitored using ThT fluorescence. The lag time
(as defined in Experimental Procedures) is represented as a function of
peptide concentration. (B) Aggregation kinetics of HI alone (○) or HI
supplemented with 26 μM LVEALYL peptide (△), with 0.3 μM DnaK
(●), or with both peptide and DnaK (▲). Aggregation was assessed
using ThT fluorescence. Lines are hand-drawn and provided as a guide
for the eye. (C) A HI solution was agitated in a hydrophobic
microplate in the presence of the LVEALYL peptide (8 μM), DnaK
(0.3 μM), and DnaJ (0.16 μM), as indicated. Aggregation was
monitored using ThT fluorescence, and the lag time was determined.
In the presence of DnaK, the lag time extended beyond 10 h.
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(Figure 4). On the other hand, when the residence time of
DnaK is reduced by addition of ATP, aggregates can form
rapidly because of the liberation of previously occupied
hydrophobic growing fiber ends (Figures 3 and 4). Thus, the
absence of ATP, through a substrate affinity increase, allows
DnaK to win the competition between adding a blocking DnaK
to a growing fiber end and an additional HI molecule, which
would promote fiber growth. The competition can also be
promoted by a sufficiently high concentration of the LVEALYL
peptide, which accelerates HI aggregation so that it overcomes
DnaK protection (Figure 7). Although significant amounts of
DnaK are released from the surface (Table 1), together with the
HI amyloid aggregates, it is the surface-bound DnaK fraction
that sets the pace for fiber growth. In the ATP-free state, this
latter DnaK fraction exhibits an affinity for growing fiber ends
that is sufficiently high to block fiber formation. The inhibitory
effect of DnaK on HI aggregation is therefore linked to its
presence on the material surfaces.
The Amyloidogenic LVEALYL Peptide Is Exposed on

HI during Its Aggregation on Hydrophobic Surfaces.
The results of this work and others show that insulin aggregates
are able to form and grow on hydrophobic surfaces. What is the
likely mechanism of this self-assembly process? Up to 40 μg of
HI accumulates on the 2 cm2 surface area of a single microwell
during aggregation (Figure 1A). This high surface concen-
tration (0.2 g/m2) corresponds to 50 protein layers, assuming a
uniform coverage of the surface. A consequence of this
observation is that insulin does not merely adsorb on
the plain hydrophobic surface, but on insulin already bound
to the surface. The effect of the hydrophobic surface should
therefore be transmitted from the bottom to the top HI layers,
where incoming HI binds. This implies the existence of global
conformational changes that relay the effect of the hydrophobic
surface. Adsorption of HI molecules on a hydrophobic surface
will itself trigger the exposure of a hydrophobic stretch at the
surface of adsorbed HI. Although we did not evidence these
conformational changes directly, several results support this
hypothesis. (i) DnaK binds to HI adsorbed on hydrophobic
surfaces, which shows that the structure of the HI protein has
changed, exposing one of the two hydrophobic peptides known
to bind DnaK: SLYQLENY and LVEALYL. (ii) The LVEALYL
peptide itself interacts with HI in the presence of hydrophobic
surfaces at a substoichiometric concentration in such a way to
accelerate aggregation. This peptide has been shown to form
antiparallel β-sheets with itself13 and could therefore help
stabilize a conformational change in insulin by binding to inter-
mediate states. (iii) The antagonist effects of the LVEALYL
peptide and DnaK binding on HI aggregation reveal the
presence of the same aggregation intermediates in the adsorbed
HI pool. (iv) DnaK binds to preformed LVEALYL peptide
aggregates. We therefore conclude that the buildup of amyloid
fibers on the hydrophobic surface is due to HI adsorption and
consequent conformational changes, exposing hydrophobic
aggregation-prone sites in the protein. This situation occurs for
some proteins, but not all of them. BSA, for instance, strongly
binds to hydrophobic surfaces but does not accumulate on
them and does not aggregate within an entire week in the
presence of hydrophobic surfaces.
Perspectives. Our results have interesting potential

biochemical and pharmaceutical applications. First, substoichio-
metric DnaK and DnaJ, in the absence of ATP, could represent
a novel and convenient stabilizing additive. Indeed, the low
DnaK concentration (0.3 μM), needed to stabilize HI solutions,

and its selectivity for exposed hydrophobic peptide domains are
characteristics that most traditional stabilizing agents lack. Two
recent papers by Rasmussen et al.31,32 showed that the protein
α-crystallin, a member of the small heat shock protein family
(sHSP), prevents HI aggregation on hydrophobic surfaces.
Molecular chaperones, therefore, represent alternative ap-
proaches to guaranteeing the long-term storage of proteins,
either in solution or in contact with the container surface. One
should nevertheless be aware that DnaK triggers inflammatory
responses and thus cannot be injected into patients.33 DnaK, or
better the DnaK−DnaJ combination, could also provide a
sensitive in vitro assay to test for protein conformational
changes at material surfaces, as shown for HI in this study. By
revealing the presence of hydrophobic stretches exposed at the
surface of proteins adsorbed on hydrophobic materials, this
assay could provide a screening tool for the optimization of
protein stability conditions.

■ AUTHOR INFORMATION

Corresponding Author
*Telephone: ++ 33 4 56 52 93 35. Fax: ++ 33 4 56 52 93 01.
E-mail: marianne.weidenhaupt@grenoble-inp.fr.

Present Address
§EIFFAGE Travaux Publics, Centre d’Etudes et de Recherches,
8 rue du Dauphine,́ 69960 Corbas, France.

Funding
This project was financed by a CNRS “Prise de risques” grant
(CHAPROMAT). T.B. is a recipient of a CIFRE fellowship
(371/2007). L.N.holds a doctoral fellowship from La Reǵion
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