138 research outputs found

    A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

    Get PDF
    TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model

    A Mendelian randomization study of circulating uric acid and type 2 diabetes

    Get PDF
    We aimed to investigate the causal effect of circulating uric acid concentrations on type 2 diabetes risk. A Mendelian randomization study was performed using a genetic score with 24 uric acid associated loci. We used data of the EPIC-InterAct case-cohort study, comprising 24,265 individuals of European ancestry from eight European countries. During a mean (SD) follow-up of 10 (4) years, 10,576 verified incident type 2 diabetes cases were ascertained. Higher uric acid associated with higher diabetes risk following adjustment for confounders, with a HR of 1.20 (95%CI: 1.11,1.30) per 59.48 µmol/L (1 mg/dL) uric acid. The genetic score raised uric acid by 17 µmol/L (95%CI: 15,18) per SD increase, and explained 4% of uric acid variation. Using the genetic score to estimate the unconfounded effect found that a 59.48 µmol/L higher uric acid concentration did not have a causal effect on diabetes (HR 1.01, 95%CI: 0.87,1.16). Including data from DIAGRAM consortium, increasing our dataset to 41,508 diabetes cases, the summary OR estimate was 0.99 (95%CI: 0.92, 1.06). In conclusion, our study does not support a causal effect of circulating uric acid on diabetes risk. Uric acid lowering therapies may therefore not be beneficial in reducing diabetes risk

    Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis.

    Get PDF
    OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.The EPIC-InterAct study received funding from the European Union (Integrated Project LSHM-CT-2006-037197 in the Framework Programme 6 of the European Community). We thank all EPIC participants and staff for their contribution to the study. We thank Nicola Kerrison (MRC Epidemiology Unit, University of Cambridge, Cambridge, UK) for managing the data for the InterAct Project. In addition, InterAct investigators acknowledge funding from the following agencies: MT: Health Research Fund (FIS) of the Spanish Ministry of Health; the CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; Murcia Regional Government (N° 6236); JS: JS was supported by a Heisenberg-Professorship (SP716/2-1), a Clinical Research Group (KFO218/1) and a research group (Molecular Nutrition to JS) of the Bundesministerium für Bildung und Forschung (BMBF); YTvdS, JWJB, PHP, IS: Verification of diabetes cases was additionally funded by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht; HBBdM: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); MDCL: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (N° 6236); FLC: Cancer Research UK; PD: Wellcome Trust; LG: Swedish Research Council; GH: The county of Västerbotten; RK: Deutsche Krebshilfe; TJK: Cancer Research UK; KK: Medical Research Council UK, Cancer Research UK; AK: Medical Research Council (Cambridge Lipidomics Biomarker Research Initiative); CN: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (N° 6236); KO: Danish Cancer Society; OP: Faculty of Health Science, 47 University of Aarhus, Denmark; JRQ: Asturias Regional Government; LRS: Asturias Regional Government; AT: Danish Cancer Society; RT: AIRE-ONLUS Ragusa, AVIS-Ragusa, Sicilian Regional Government; DLvdA, WMMV: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); MMC: Wellcome Trust (083270/Z/07/Z), MRC (G0601261)
    corecore