48 research outputs found

    Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    Full text link
    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole-spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary spin and inclination for the axial case considered here

    Robustness of Binary Black Hole Mergers in the Presence of Spurious Radiation

    Full text link
    We present an investigation into how sensitive the last orbits and merger of binary black hole systems are to the presence of spurious radiation in the initial data. Our numerical experiments consist of a binary black hole system starting the last couple of orbits before merger with additional spurious radiation centered at the origin and fixed initial angular momentum. As the energy in the added spurious radiation increases, the binary is invariably hardened for the cases we tested, i.e. the merger of the two black holes is hastened. The change in merger time becomes significant when the additional energy provided by the spurious radiation increases the Arnowitt-Deser-Misner (ADM) mass of the spacetime by about 1%. While the final masses of the black holes increase due to partial absorption of the radiation, the final spins remain constant to within our numerical accuracy. We conjecture that the spurious radiation is primarily increasing the eccentricity of the orbit and secondarily increasing the mass of the black holes while propagating out to infinity.Comment: 12 pages, 12 figure

    Existence, Uniqueness and Regularity for Solutions of the Conical Diffraction Problem

    Get PDF
    This paper is devoted to the analysis of two Helmholtz equations in ℝ2 coupled via quasiperiodic transmission conditions on a set of piecewise smooth interfaces. The solution of this system is quasi-periodic in one direction and satisfies outgoing wave conditions with respect to the other direction. It is shown that Maxwell's equations for the diffraction of a time-harmonic oblique incident plane wave by periodic interfaces can be reduced to problems of this kind. The analysis is based on a strongly elliptic variational formulation of the differential problem in a bounded periodic cell involving nonlocal boundary operators. We obtain existence and uniqueness results for solutions corresponding to electromagnetic fields with locally finite energy. Special attention is paid to the regularity and leading asymptotics of solutions near the edges of the interface

    Probing the Binary Black Hole Merger Regime with Scalar Perturbations

    Full text link
    We present results obtained by scattering a scalar field off the curved background of a coalescing binary black hole system. A massless scalar field is evolved on a set of fixed backgrounds, each provided by a spatial hypersurface generated numerically during a binary black hole merger. We show that the scalar field scattered from the merger region exhibits quasinormal ringing once a common apparent horizon surrounds the two black holes. This occurs earlier than the onset of the perturbative regime as measured by the start of the quasinormal ringing in the gravitational waveforms. We also use the scalar quasinormal frequencies to associate a mass and a spin with each hypersurface, and observe the compatibility of this measure with the horizon mass and spin computed from the dynamical horizon framework.Comment: 10 Pages and 6 figure

    From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    Full text link
    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.Comment: 18 pages, 4 figures, accepted for publication in Scientific Programmin

    Binary Black Holes: Spin Dynamics and Gravitational Recoil

    Full text link
    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the \KKF{,} and verify that the recoil along the direction of the orbital angular momentum is sinθ\propto \sin\theta and on the orbital plane cosθ\propto \cos\theta, with θ\theta the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.Comment: 15 pages, 10 figures, replaced with version accepted for publication in PR

    Gravitational recoil from spinning binary black hole mergers

    Get PDF
    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude aa aligned/anti-aligned with the orbital angular momentum, with aa the dimensionless spin parameters of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475 \KMS a. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole produced by the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in Ap

    Superkicks in Hyperbolic Encounters of Binary Black Holes

    Full text link
    Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasi-circular inspirals, for which kicks as large as 3,300 km/s have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasi-circular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible to achieve kick velocities as large as 10,000 km/s.Comment: 4 pages, 5 figures, 1 tabl

    Unequal Mass Binary Black Hole Plunges and Gravitational Recoil

    Full text link
    We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters η=M1M2/(M1+M2)2=0.25,0.248,0.246,0.229,0.183\eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of CQ
    corecore