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Abstract

This paper is devoted to the analysis of two Helmholtz equations in R2 coupled

via quasiperiodic transmission conditions on a set of piecewise smooth interfaces.

The solution of this system is quasi�periodic in one direction and satis�es outgoing

wave conditions with respect to the other direction. It is shown that Maxwell's equa-

tions for the di�raction of a time�harmonic oblique incident plane wave by periodic

interfaces can be reduced to problems of this kind. The analysis is based on a strongly

elliptic variational formulation of the di�erential problem in a bounded periodic cell

involving nonlocal boundary operators. We obtain existence and uniqueness results

for solutions corresponding to electromagnetic �elds with locally �nite energy. Spe-

cial attention is paid to the regularity and leading asymptotics of solutions near the

edges of the interface.

1 Introduction

We consider a time�harmonic electromagnetic plane wave incident on a general periodic

structure in R3, which is assumed to be in�nitely wide and invariant in one spatial di-

rection, say x3. Such structures are called di�raction gratings in the optics and physics

literature. The periodic structure separates two regions with constant dielectric coe�-

cients. Inside the structure, the dielectric coe�cient is allowed to be a piecewise constant

function. This problem is motivated by several applications in micro�optics, where tools

from the semiconductor industry are used to fabricate optical devices with complicated

structural features within the lengthscale of optical waves. Such di�ractive elements have

many technological advantages and can be designed to perform functions unattainable

with traditional optical elements. One of the most common geometrical con�gurations

for di�ractive optical structures is a periodic pattern etched into the surface of a thin��lm

layer stack, as shown in Figure 1. Since modern mask�etch fabrication processes yield

nonsmooth interface pro�les it is important to include this case into the considerations.
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Figure 1: Di�raction of a plane-wave on a so�called binary grating. The period of the

grating is generally comparable to the length of the incident wave.
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In the engineering community it is widely accepted that theoretical models from scalar

geometrical optics are generally not accurate to predict the performance of structures with

periods comparable to the wavelength or even to carry out optimal design of new struc-

tures. The development and application of this new technology has to rely on accurate

mathematical models and numerical codes for solving the full electromagnetic vector��eld

equations. The electromagnetic theory of gratings has been studied since Rayleigh's time.

For an introduction to this problem along with some numerical methods see the collec-

tion of articles [25]. By far the largest number of papers in the literature has come from

the optics and engineering community, whereas rigorous mathematical results have been

obtained only during the last years (see [17], [16] and the references contained therein).

The di�raction by periodic gratings is well understood if the incident wave vector is

orthogonal to the x3�direction, i.e., the incident plane wave given by

Ei = p ei�x1�i�x2+i
x3e�i!t ; Hi = q ei�x1�i�x2+i
x3e�i!t ; (1.1)

satis�es the condition 
 = 0. Then the resulting electromagnetic �eld can be split into the

two cases of TE and TM polarization, where either the electric �eld or the magnetic �eld is

parallel to the x3�axis. In both cases Maxwell's equations can be reduced to transmission

problems for a scalar Helmholtz equation on R2, giving as solution the x3�component of

the electric or magnetic �eld, respectively. These solutions u are quasiperiodic in x1 and

satisfy for jx2j ! 1 the so�called outgoing wave condition, which means that u can be

expressed as a sum of bounded outgoing plane waves

u =
X
n2Z

ane
i(2�n=d+�)x1+i�n jx2j with (2�n=d + �)2 + �

2
n
= k

2
; (1.2)

where k is the refractive index of the homogeneous material above or below the grating,

and Im �n � 0. We see from (1.2) that in a dielectric medium, i.e. k2 > 0, only a �nite

number of plane waves in the sum propagate into the far �eld, the other modes decay

exponentially as jx2j ! 1. The number of propagating modes and the direction of their

wave vectors are completely determined by the length of the incident wave, by the period of

the grating and by the refractive index of the corresponding material, but the coe�cients

an in (1.2) are unknown. From the engineering point of view, these Rayleigh coe�cients

are the key feature of any grating since they indicate the energy and phase shift of the

propagating modes. However, apart from the trivial case of a layer system, no analytic

formulas for these coe�cients are available, and various methods for the approximate

solution of the classical TE and TM di�raction problems have been proposed. Among the

most well known are methods based on Rayleigh or eigenmode expansions, di�erential and

integral methods (cf. [25], [6], [22], [20]), and an analytical continuation method of Bruno

& Reitich ([7]). Recently, a �nite element method was proposed by Bao & Dobson ([12],

[2]), which is based on equivalent variational formulations of the problems in a bounded

periodic cell (see also Bonnet-Bendhia & Starling [5]). This approach turned out to be

well adapted for the analytical treatment of very general di�raction structures as well

as complex materials. Quite complete results on existence, uniqueness and regularity of

solutions for non�smooth interfaces and all materials occuring in practice were recently

obtained in [16] which extend previous results for the classical di�raction problems by

Chen & Friedman [8], Nedelec & Starling [24], Abboud [1], Bao [3], and Dobson [12].

In the recent papers [13], [4] the variational approach was applied to the general case

of di�raction in biperiodic structures, which are periodic also in the x3�direction. The au-

thors obtained a variational equation for the magnetic �eldH. They investigated existence
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and uniqueness of H1�regular solutions and considered the �nite element discretization

of this equation. These results apply also to the practically important case of so�called

conical di�raction, where an incident �eld is di�racted by a periodic structure, but its

wave vector is not orthogonal to the x3�direction, i.e. 
 6= 0. Then the components of

the di�racted electromagnetic �eld take the formX
n2Z

ane
i(2�n=d+�)x1+i�n jx2j+i
 x3 ; where (2�n=d + �)2 + �

2
n
+ 


2 = k
2
: (1.3)

Note that the wave vectors of the propagating re�ected or transmitted modes lie on the

surface of a cone whose axis is parallel to the x3�direction. Therefore the engineers speak

of conical di�raction, which occurs in a variety of technological applications, for exam-

ple, laser scanners. Due to the simpler geometry compared with biperiodic structures,

Maxwell's equations for conical di�raction can be reduced to two�dimensional problems

which are closely connected with the classical TE and TM di�raction. To calculate the

Rayleigh coe�cients under conical incidence, some methods have been proposed which

extend the known engineering methods used for the classical problems (cf. [25]). To our

knowledge, no rigorous existence and uniqueness results for these equations, especially

for structures with non�smooth interfaces, or results on the convergence of the numerical

methods are known.

In this paper we extend the approach of [16] to the conical di�raction problem. We

obtain a strongly elliptic variational formulation, which allows us to state general existence

and uniqueness results and to study the asymptotics and regularity near edges of the

grating surface. Note that this formulation can be used successfully to study certain

inverse problems for conical di�raction and to develop e�cient and reliable numerical

methods for solving direct and optimal design problems.

The outline of the paper is as follows. In Section 2 we transform Maxwell's equations

to a system of two Helmholtz equations in R2, with quasiperiodic transmission conditions

on the piecewise smooth interfaces, which has to be satis�ed by the x3�components of the

electric and magnetic �elds. We show that the system admits an equivalent variational

formulation in the Sobolev space H1 on some bounded periodic cell 
. In Section 3 we

prove existence and uniqueness results for variational solutions of the problem under cer-

tain assumptions on the grating materials that have a reasonable physical interpretation

and are satis�ed for any relevant practical application. Finally, in Section 4 we study

the singularities of the variational solution to the di�erential problem near edges of the

grating interfaces.

2 Preliminaries

2.1 The Maxwell equations

Suppose that the whole space is �lled with non-magnetic material with a permittivity

function ", which in Cartesian coordinates (x1; x2; x3) does not depend on x3, is periodic

in x1, and homogeneous above and below certain interfaces. In practice, the period d

of optical gratings under consideration is comparable with the wavelength � = 2�c=!
of incoming plane optical waves, where c denotes the speed of light. For notational
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convenience we will change the length scale by a factor of 2�=d, such that the grating

becomes 2�- periodic: "(x1+2�; x2) = "(x1; x2). Note that this is equivalent to multiplying

the frequency ! by d=2�.

The intersection of the upper grating surface with the (x1; x2)�plane is denoted in the

sequel by �0, the intersection of the lower interface with the (x1; x2)�plane will be denoted
by �1. We assume that the curves �0 and �1 are simple and 2��periodic and that �0 > �1

pointwise, i.e., if (x1; y0) 2 �0, (x1; y1) 2 �1 then y0 > y1. The material in the region

G
+ � R3 above the grating surface �0 �R has the constant dielectric coe�cient " = "

+,

whereas the medium in G� below �1 �R is homogeneous with " = "
�. The medium in

the region G0 between �0 � R and �1 � R is inhomogeneous with " = "0(x1; x2), and
we assume that the function "0 is piecewise constant with jumps at certain interfaces �j,

j = 2; : : : ; `.

The grating is illuminated by a plane wave of the form (1.1) at conical incidence. This

wave (Ei
;Hi) will be di�racted by the grating, and the total �elds will be given by

Eup = Ei +Erefl
;Hup = Hi +Hrefl

in the region G+, by Eint and Hint in G0; and by

Edown = Erefr
; Hdown = Hrefr

in the region G
�. Dropping the factor e�i!t, the incident, di�racted, and total �elds

satisfy the time�harmonic Maxwell equations

rr�E = i!�H and rr�H = �i!"E ; (2.1)

with the everywhere constant magnetic permeability � > 0. Additionally the tangential

components of the total �elds are continuous when crossing an interface � � R between

two homogeneous media

n� (E1 �E2) = 0 and n� (H1 �H2) = 0 on ��R ; (2.2)

where n is the unit normal to the interface ��R. Taking the divergence of (2.1) leads to
rr � ("E) = 0 and rr � (�H) = 0 : (2.3)

We look for vector �elds satisfying (2.1) and (2.2) and possessing locally a �nite energy,

that is

E ; H ; rr�E ; rr�H 2 (L2
loc
(R3))3 : (2.4)

Let us make some remarks on the solvability of the di�raction in periodic structures

governed by (2.1), (2.2) and on the regularity of solutions:

Though Maxwell's equations are not an elliptic system, the elimination of one of the two

�elds E or H yields a variational formulation for a second order elliptic system. For

example, if we integrate the second equation of (2.1) over some bounded domain 
 � R3

versus "�1(rr� F) and the �rst versus i!F, then we obtainZ



�
"
�1(rr�H) � (rr� F)� !

2
�H � F

�
�
Z
@


"
�1((rr�H)� n) � F = 0 :
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Taking into account the divergence equation (2.3) the magnetic �eld H satis�es also the

equation Z



�
"
�1(rr�H) � (rr�F) + s (rr � �H) (rr � �F) � !

2
�H � F

�

�
Z
@


"
�1((rr�H)� n) � F = 0

(2.5)

for any parameter s > 0. This relation can be used to treat boundary value problems for

Maxwell's equations with variational methods; for a discussion of this topic cf. [9], [10].

It is also possible to derive a variational formulation for the general case of di�raction in

biperiodic structures if the periodic nature of the problem and the corresponding radiation

condition are employed. Here this condition means that the far �eld is composed of

bounded outgoing plane waves which are quasiperiodic in both the x1� and x3�directions.

The explicit form of this variational equation was given by Dobson [13] and Bao [4], where

also the existence of unique solutions H 2 (H1
loc
)3 is stated, except possibly for a discrete

set of frequencies !.

It is important to mention that there exist solutions of �nite energy of the Dirichlet

problem for Maxwell's equations, posed with smooth data functions on a polyhedral do-

main, which are not H1�regular, see [10] and the literature cited therein. This results

from the fact that the energy space of the variational forms for Maxwell's equations con-

sists of square integrable vector �elds with square integrable curl and divergence, and

only those variational forms give back a solution of the original Maxwell equations. If the

variational equation is solvable both in H1 and in the energy space, then the H1�solution

is only the projection of the corresponding solution from the energy space. In general,

the H1�solution does not satisfy the divergence equations (2.3).

However, in the case of constant permeability � considered here, the H1�solution is

divergence free. A detailed proof for the biperiodic di�raction is beyond the scope of this

paper. Here we consider only the simple case that the wave vector of the incoming �eld is

parallel to the x2�axis. Due to [13] the domain 
 � R3 in (2.5) is a bounded periodic cell,

i.e., the cuboid (0; d1)� (�b; b)� (0; d2) with d1; d2 the periods of the di�ractive structure
in x1� and x3�direction, respectively, and b is an arbitrary su�ciently large number (cf.

also Subsection 2.3). Taking in (2.5) the test function F = rr' with ' 2 H2(
)\H1
o
(
),

it can be easily seen thatZ



�
"
�1(rr�H) � (rr� F) + s (rr � �H) (rr � �F) � !

2
�H � F

�

�
Z
@


"
�1((rr�H)� n) � F =

Z



�
s �

2(rr �H)��'+ !
2
�(rr �H)'

�
= 0 :

If the number s > 0 is chosen such that !2=s � is not an eigenvalue of the Dirichlet problem
for ��� in 
, then the H2�regularity for solutions ' of the boundary value problem

s ���' + !
2
' = f 2 L2(
) ; 'j@
 = 0 ;

shows that rr �H = 0 in 
 for the H1�solution H.

Consequently, Maxwell's equation for the biperiodic di�raction problem equipped with

the mentioned radiation condition has for all but possibly a discrete set of frequencies !

a unique solution (E;H) and the components of the magnetic �eld are H1�regular.
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2.2 The Helmholtz equations

The special situation of conical di�raction allows us to transform Maxwell's equation

to a simpler system of two�dimensional Helmholtz equations coupled via transmission

conditions at the interfaces. For the following we introduce the piecewise constant function

k =
p
!2"� ; (2.6)

where the branch of the square-root is chosen such that k > 0 for positive real arguments

!
2
"� and its branch-cut is (�1; 0).

In order for (Ei
;Hi) to satisfy (2.1) the constant amplitude vector p must be perpen-

dicular to the wave vector k = (�;��; 
), p � k = 0, further k � k = (k+)2 = !
2
�"

+ and

q = (!�)�1k� p. The wave vector of the incident �eld can be expressed in terms of the

angles of incidence �1;�2 2 (��=2; �=2) as

k = k
+(sin�1 cos�2;� cos �1 cos �2; sin �2) :

Since the grating is invariant with respect to any translation parallel to the x3�axis, in

view of (1.1) we assume the representation of the total �eld

(E;H)(x1; x2; x3) = (E;H)(x1; x2) e
i
x3; (2.7)

with E;H : R2 ! C
3 . Note that numerical methods for solving conical di�raction prob-

lems are usually based on (2.7); see [27], [26].

To simplify the notation we de�ne the di�erential operator

curl
� = (r; i
)� � := (@1; @2; i
)� � :

Then the Maxwell equations (2.1) for (E;H) are equivalent to

curl
E = i!�H ; curl
H = �i!"E (2.8)

in each subdomain in which " is constant. The boundary conditions on the interface

between two such subdomains are

[(n; 0) � E]�j�R= [(n; 0)�H]�j�R= 0 (2.9)

where (n; 0) = (n1; n2; 0) is the normal vector on the interface and [(n; 0)�E]�j�Rdenotes
the jump of the function (n; 0)�E across the interface �j�R. Note that from the identityZ




v curl
 u� u curl
v =

Z
@


((n; 0) � u) v ;

which holds for any bounded Lipschitz domain 
 � R2, any functions u; curl
u 2 (L2(
))3

and v 2 (H1(
))3, it follows that (n; 0)� u 2 (H�1=2(@
))3.

With the ansatz (2.7) and using the notation (2.6) it is easily seen that the Maxwell

equations (2.1), (2.3) for (E;H) are reduced to the vector Helmholtz equations

(� + k
2 � 


2)E = (� + k
2 � 


2)H = 0 : (2.10)
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We shall assume throughout the paper that the material parameters of the grating

ful�l the following conditions

k
2


:= k

2 � 

2 6= 0 ;

k
+
> 0 ; Re k� > 0 ; Im k

� � 0 ;

Re k0(x1; x2) > 0 ; Im k0(x1; x2) � 0 :

(2.11)

Note that materials with real k are dielectrics, whereas the case Im k > 0 accounts for

materials which absorb energy.

Since k2


6= 0, from the 2d-Maxwell equations (2.8) it follows directly that if we know

the third components E3;H3 of the electric and the magnetic �eld we can compute the

other components by

E1 =
i

k2



(!�@2H3 + 
@1E3) ; H1 =
i

k2



(�!"@2E3 + 
@1H3) ;

E2 =
i

k2



(�!�@1H3 + 
@2E3) ; H2 =
i

k2



(!"@1E3 + 
@2H3) :
(2.12)

Thus we obtain the identities

@1E3 = i
E1 � i!�H2 ; @2E3 = i
E2 + i!�H1 ;

@1H3 = i
H1 + i!"E2 ; @2H3 = i
H2 � i!"E1 ;

implying that the condition of locally �nite energy (2.4) is satis�ed only if the x3�compo-

nents of E and H are H1�regular. Therefore we look for solutions E3;H3 2 H
1
loc
(R2) of

the equations

(�+ k
2


)E3 = (�+ k

2


)H3 = 0 (2.13)

in each of the domains in which " is constant. In addition, one has to impose the trans-

mission conditions

[E3]�j = [H3]�j = 0 ;
h



k2



@tH3 +
!"

k2



@nE3

i
�j

=
h



k2



@tE3 � !�

k2



@nH3

i
�j

= 0 ; (2.14)

at the interfaces �j, where @t = n1@2 � n2@1 denotes the tangential derivative. The

conditions (2.14) are a direct consequence of (2.9) taking into account the de�nition of

n = (n1; n2; 0) and equations (2.12).

It is easy to check that any solution of (2.13), (2.14) gives via (2.12) and (2.7) a

solenoidal solution of the Maxwell equations (2.1) � (2.3).

Remark 2.1 In the case 
 = 0 the problem (2.13), (2.14) splits into the known transmis-

sion problems for scalar Helmholtz equations corresponding to the TE and TM polariza-

tion, respectively. In the engineering literature Maxwell's equations for conical di�raction

are mostly reduced to a system of 4 �rst-order partial di�erential equations (cf. [27]),

a di�erential problem similar to (2.13), (2.14) in the case of two di�erent materials was

recently proposed in [26].

The periodicity of ", together with the form of the incident wave, motivates to seek for

physical solutions E and H which are � quasi�periodic in x1, i.e., we look for solutions of

(2.13), (2.14) satisfying

E3(x1 + 2�; x2) = e
2�i�

E3(x1; x2) ; H3(x1 + 2�; x2) = e
2�i�

H3(x1; x2) : (2.15)
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Because the domain is unbounded in the x2�direction, a radiation condition on the scatter-

ing problem must be imposed at in�nity, namely that the di�racted �elds remain bounded

and that they should be representable as superpositions of outgoing waves. Note that

this conditions follows immediately from Sommerfeld's radiation condition speci�ed to

the quasi�periodic nature of the problem.

In the following we denote by 
+ the domain x2 > �0, x1 2 (0; 2�), by 
� the domain

below x2 < �1, x1 2 (0; 2�), and let 
0 be the intersection of G0 with �1 < x2 < �0,

x1 2 (0; 2�). We denote the di�racted �elds in 
� by E�
;H

�
: Introduce the coe�cients

�
�

n
= �

�

n
(�) =

q
(k�



)2 � (n+ �)2; n 2Z (2.16)

where the square-root is de�ned as in equation (2.6).

Since the � quasi�periodic functions E�

3 ;H
�

3 are analytic above �0 resp. below �1,

they can be expressed as a sum of outgoing bounded plane waves, i.e., E�

3 ;H
�

3 must take

the form

E
+
3 =

X
n2Z

A
+
n
e
i(n+�)x1+i�

+
n x2 ; H

+
3 =

X
n2Z

B
+
n
e
i(n+�)x1+i�

+
n x2 ; x2 > max�0 ;

E
�

3 =
X
n2Z

A
�

n
e
i(n+�)x1�i�

�

n x2 ; H
�

3 =
X
n2Z

B
�

n
e
i(n+�)x1�i�

�

n x2 ; x2 < min�1 ;

(2.17)

with some complex constants A�

n
; B

�

n
: More details can be found in [24, 17, 16].

2.3 The variational formulation

To obtain equations being equivalent to (2.13), (2.14), (2.17) we introduce the functions

u =

8<
:

e
�i�x1 E

+
3 + p3e

�i�x2

e
�i�x1 E3

e
�i�x1 E

�

3

; v =

8<
:

e
�i�x1H

+
3 + q3e

�i�x2 in 
+
;

e
�i�x1H3 in 
0 ;

e
�i�x1H

�

3 in 
�
;

which are in view of (2.15) 2��periodic in x1. To formulate the di�erential problem for u

and v; we de�ne the operators

r� = r+ i (�; 0) ; �� = r� � r� = �+ 2i�@x1 � �
2
;

@t;� = n1@2 � n2@1 � i�n2 ; @n;� = n � r� :

Next, we introduce as arti�cial boundaries two straight lines �� = f(x1;�b)jx1 2 [0; 2�]g,
with b > 0 such that b > �0 and �b < �1, and set 
 = (0; 2�) � (�b; b): Let us denote
by Hs

p
(
); s � 0, the restriction to 
 of all functions in the Sobolev space Hs

loc
(R2) which

are 2��periodic in x1.

The di�raction problem can now be formulated as follows. By virtue of (2.10) the

functions u; v 2 H1
p
(
) have to satisfy the di�erential equations

(�� + k
2


)u = (�� + k

2


) v = 0 in 
 (2.18)

and the transmission conditions (2.14) readh



k2



@t;�u� !�

k2



@n;�v

i
�j

=
h



k2



@t;�v +
!"

k2



@n;�u

i
�j

= 0 ; j = 0; :::; `: (2.19)
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The conditions [u]�j = [v]�j = 0, which have to be imposed in view of equation (2.9), are

a consequence of u; v 2 H1
p
(
): Moreover, u and v have to satisfy the radiation condition

(2.17). which implies representations of the following form in a neighbourhood of �+ and

��, respectively:

u(x1; x2) =
X
n2Z

A
+
n
e
inx1+i�

+
n x2 + p3e

�i�x2 ; v(x1; x2) =
X
n2Z

B
+
n
e
inx1+i�

+
n x2 + q3e

�i�x2 ;

u(x1; x2) =
X
n2Z

A
�

n
e
inx1+i�

�

n x2 ; v(x1; x2) =
X
n2Z

B
�

n
e
inx1+i�

�

n x2 :

(2.20)

Let 
j, j = 1; � � � ;m, be the two-dimensional subdomains of 
 in which " does not

jump. From Green's formula we obtain for f; g 2 H1
p
(
) the identitiesZ


j

��f g = �
Z

j

r�f r�g +

Z
@
j

@n;�f g ;

Z

j

r�g r?

�
f = �

Z
@
j

@t;�g f ; (2.21)

where we use the notation r?

�
:= (�@2f; @1f) + i (0; �).

Multiplying the equations (2.18) in each subdomain 
j by the constant factors !"=k2



and !�=k2


, respectively, the application of the �rst identity in (2.21) with '; 2 H1

p
(
)

leads to the equations

mX
j=1

�Z

j

�
!"

k2



r� u r�'� !"u '

�
�
Z
@
j

!"

k2



@n;�u '

�
= 0 ;

mX
j=1

�Z

j

�
!�

k2



r�v r� � !�v  

�
�
Z
@
j

!�

k2



@n;�v  

�
= 0 :

(2.22)

Using the transmission conditions (2.19) at the interfaces and the outgoing wave con-

ditions the equations (2.22) can be transformed to a variational problem for u and v in 
.
We obtain here a formulation in which the integrals over the interfaces disappear, which

will be useful for theoretic investigations. Note that the straightforward generalization

of the variational formulations for the classical di�raction problems will contain integrals

over the interfaces and scalar nonlocal boundary operators. The use of this formulation

for numerical approximations will be discussed elsewhere.

The integrals over the interfaces disappear if we use the second identity in (2.21) to

obtain the equivalent equationsX
j

�Z

j

�
!"

k2



r�ur�'� 


k2



r�vr?

�
'� !"u'

�
�
Z
@
j

�
!"

k2



@n;�u+



k2



@t;�v

�
'

�
= 0 ;

X
j

�Z

j

�
!�

k2



r�vr� +



k2



r�ur?

�
 � !�v 

�
�
Z
@
j

�
!�

k2



@n;�v � 


k2



@t;�u

�
 

�
= 0 :

(2.23)

Now the boundary integrals on the interfaces in (2.23) annihilate in view of (2.14) and it

remains to handle the integrals over the arti�cial boundaries ��. Introduce the matrix

functions

M
�

n
=

1

(k�


)2

 
�i!"��

n
�i
(n+ �)

�i
(n+ �) �i!���
n

!
: (2.24)
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Then the action of the boundary operators onto the functions u and v satisfying (2.20)

can be represented in the form�
(!"@n;�u+ 
@t;�v)=k

2



(!�@n;�v � 
@t;�u)=k
2



�
(x1; b) = �

X
n2Z

M
+
n

�
A
+
n

B
+
n

�
e
inx1+i�

+
n b � i!� e

�i�b

k2



�
" p3

� q3

�
;

�
(!"@n;�u+ 
@t;�v)=k

2



(!�@n;�v � 
@t;�u)=k
2



�
(x1;�b) = �

X
n2Z

M
�

n

�
A
�

n

B
�

n

�
e
inx1�i�

�

n b
:

(2.25)

On the other hand, de�ne the operators T�
�
acting on 2�-periodic vector functions on R

(T�
�
w)(x) =

X
n2Z

M
�

n
ŵne

inx
; ŵn = (2�)�1

2�Z
0

w(x) e�inx dx : (2.26)

In the sequel the action of these operators on boundary values (u; v)j�� 2 (H
s�1=2
p (��))2

of functions (u; v) 2 (Hs

p
(
))2 is denoted by T�

�
(u; v). Note that an equivalent norm of

H
s

p
(��) is given by

kukHs
p(�

�) =
�
jû�0 j2 +

X
n6=0

jnj2sjû�
n
j2
�1=2

; û
�

n
= (2�)�1

2�Z
0

u(x;�b) e�inx dx : (2.27)

Taking into account (2.20) we get

T
+
�

�
u

v

�
=
X
n2Z

M
+
n

�
A
+
n

B
+
n

�
e
inx1+i�

+
n b � i!� e

�i�b

k2



�
" p3

� q3

�
;

T
�

�

�
u

v

�
=
X
n2Z

M
�

n

�
A
�

n

B
�

n

�
e
inx1�i�

�

n b
:

(2.28)

Therefore, combining (2.23), (2.25) and (2.28), the conical di�raction problem (2.18)

� (2.20) can now be formulated as follows: Find u; v 2 H1
p
(
) such that

B(u; v;'; ) :=Z



�
!"

k2



r�ur�'� 


k2



r�vr?

�
'+

!�

k2



r�vr� +



k2



r�ur?

�
 � !"u'� !�v 

�

+

Z
�+

T
+
�

�
u

v

�
�
�
'

 

�
+

Z
��

T
�

�

�
u

v

�
�
�
'

 

�
= �2i e�i�b

k2



Z
�+

�
!" p3 ' + !�q3  

�
; (2.29)

8'; 2 H1
p
(
) :

Since T�
�

is a periodic pseudodi�erential operator of order 1 (see e.g. [15]), it maps the

Sobolev space (H
1=2
p (��))2 boundedly into (H

�1=2
p (��))2 and therefore, B(u; v;'; ) is a

bounded sesquilinear form on (H1
p
(
))2. Setting

B(u; v;'; ) =

�
B
�
u

v

�
;

�
'

 

��
L2(
)�L2(
)

;

the form B obviously generates a bounded linear operator

B : H1
p
(
)�H

1
p
(
) �! (H1

p
(
))0 � (H1

p
(
))0 : (2.30)
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3 Solvability and regularity of the conical di�raction

problem

3.1 First existence and uniqueness results

We are interested in the existence and uniqueness of solutions for ranges of frequencies !

and of incidence angles �1;�2. First we state a uniqueness result generalizing [16, Lemma

3.1] in the case of classical di�raction.

Theorem 3.1 Suppose that Im k > 0 in some subdomain 
1 � 
 where " is constant.

Then the di�raction problem (2.18) � (2.20), or equivalently, the variational problem (2.29)

has at most one solution in (H1
p
(
))2 for all ! > 0.

The following theorem establishes existence and uniqueness for all su�ciently small

frequencies.

Theorem 3.2 Choose some maximum incidence angle �0 2 (0; �=2), and suppose that

k
2
> 


2 if k is real. Assume further that (k�)2 > �
2 + 


2 if k� is real. Then there exists

a frequency !0 > 0 such that the variational problem (2.29) admits a unique solution

(u; v) 2 (H1
p
(
))2 for all incidence angles �1;�2 with j�1j; j�2j � �0 and all frequencies

! with 0 < ! � !0.

Remark 3.1 By Snell's law the condition (k�)2 > �
2+ 
2 is necessary that the incident

wave will be transmitted to the lower region. Hence, the assumptions of Theorem 3.2

have a reasonable physical interpretation and are satis�ed for any relevant application.

Further solvability results in the case of arbitrary frequencies will be presented in the

next paragraph. To prove the above theorems, it is convenient to reformulate the principal

part of the variational form (2.29) as follows. We have

B1(u; v;'; ) :=

Z



�
!"

k2



r�ur�' � 


k2



r�vr?

�
'+

!�

k2



r�vr� +



k2



r�ur?

�
 

�

=

Z



D(@1;�u; @1;�v; @2u; @2v)
T � (@1;�'; @1;� ; @2'; @2 )T

(3.1)

with the matrix D given by

D =
1

k2



0
BB@

!" 0 0 �

0 !� 
 0
0 
 !" 0
�
 0 0 !�

1
CCA :

Taking the unitary matrix

U =
1p
2

�
I iI

iI I

�
with U� = U�1 = 1p

2

�
I �iI
�iI I

�
; (3.2)
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where I denotes the two�dimensional identity matrix, we obtain

U�1DU =

�
N
� 0
0 N

+

�
; where N

� =
1

k2



�
!" �i

�i
 !�

�
: (3.3)

Introducing the di�erential operators

@
+
�
:=

1p
2
(�i@1;� + @2) ; @

�

�
:=

1p
2
(@1;� � i@2) ;

we get from (3.2) and (3.3) that the representation

B1(u; v;'; ) =

Z



�
N

+
@
+
�

�
u

v

�
� @+

�

�
'

 

�
+N

�
@
�

�

�
u

v

�
� @�

�

�
'

 

��
(3.4)

holds. To study the form B1, the following lemma is needed. We shall write N > 0 if the

matrix N is positive de�nite and N � 0 if it is non�negative.

Lemma 3.1 (i) If Im k
2
> 0 or k2 6= 


2 for real k, then Re (iN�) � 0.
(ii) Suppose that Im k

2
> 0 or k2 > 


2 if k is real. Then Re (�N�) > 0 with � =
(i+ �)=ji+ �j and � > 0 su�ciently small.

Proof. We have

Re (�N�) =

 
(!�)�1Re (�k2=k2



) �i
Re (�=k2



)

�i
Re (�=k2


) !�Re (�=k2



)

!
:

If k is real, then obviously (i) holds with Re (iN�) = 0. In the case of nonreal k,

Re (�N�) � 0 if and only if the following two conditions are satis�ed:

Re (�k2=k2


) = Re � + 


2Re (�=k2


) � 0 ;

det (�N�) = (Re � + 

2Re (�=k2



)) Re (�=k2



) � 


2 (Re (�=k2


))2

= Re � Re (�=k2


) � 0:

(3.5)

These conditions are equivalent to

Re � � 0; Re � Re k2


+ Im � Im k

2


� 0: (3.6)

Consequently, for Imk
2
> 0, (3.6) is satis�ed with � = i which proves (i). Moreover, (3.5)

and (3.6) hold with strict inequalities if Im k
2
> 0 and � = (i + �)=ji + �j with � > 0

su�ciently small, or if k2 > 

2 and Re � > 0. Thus (ii) is proved.

To examine the terms in (2.29) coming from the boundary operators T�
�
, we need the

following lemma. Consider the matrices

M
� :=

1

k2



��i!"(k2


� �

2)1=2 �i
�
�i
� �i!�(k2



� �

2)1=2

�
:

Note that the matrices M�

n
de�ned in (2.24) are obtained from M

� by replacing � with

�+ n .
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Lemma 3.2 (i) If Im k
2
> 0, then Re (iM�) > 0.

(ii) For k 2 R and k2 6= 

2, we have Re (iM�) � 0.

(iii) Suppose that k2 > �
2 + 


2. Then Re (�M�) > 0 with � = (i+ �)=ji+ �j and � > 0
su�ciently small.

Proof. (i) We have

L
� := Re (iM�) =

 
(!�)�1 Re (k2(k2



� �

2)1=2k�2


) �i�
 Im k

�2



�i�
 Im k
�2



!� Re ((k2


� �

2)1=2k�2


)

!
:

Since

0 < arg k2


� arg (k2



� �

2) < �

implies the relation

��=2 < �(arg k2


)=2 � arg ((k2



� �

2)1=2k�2


) < �=2;

the elements on the main diagonal of L� are positive. Thus it remains to verify that

detL� =
�
Re (k2



� �

2)1=2 + 

2Re ((k2



� �

2)1=2k�2


)
�
Re ((k2



� �

2)1=2k�2


)

�
2�2
�
Im k

�2



�2
> 0 ;

which is obviously a consequence of the inequality

�
Re ((k2



� �

2)1=2k�2


)
�2

> �
2
�
Im k

�2



�2
: (3.7)

To prove (3.7), we set k2


= ia+ b; a > 0; b 2 R, and c = b � �

2 so that this estimate is

equivalent to

A := (Re [(ia+ c)1=2(b� ia)] )2 > �
2
a
2
: (3.8)

Let � = arg (ia+ c) 2 (0; �). Then

sin� = a (a2 + c
2)�1=2 ; cos � = c (a2 + c

2)�1=2 ;

sin2 (�=2) = (1� cos�)=2 = f1� c(a2 + c
2)�1=2g=2 ;

and we obtain from

Re [(ia+ c)1=2(b� ia)] = (a2 + c
2)1=4 Re [(cos

�

2
+ i sin

�

2
)(b� ia)]

= (a2 + c
2)1=4 (b cos

�

2
+ a sin

�

2
)

the inequality

A = (a2 + c
2)1=2 (b2 cos2

�

2
+ a

2 sin2
�

2
+ ab sin�)

� (a2 + c
2)1=2 (a2 sin2

�

2
+ ab sin�) = a

2 ((a2 + c
2)1=2 � c)=2 + a

2
b =: B :
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To verify (3.8), we have to show that B > �
2
a
2 = a

2(b� c). This is obvious for c � 0 and

follows from the estimate (a2 + c
2)1=2 + jcj � 2 jcj for c < 0.

(ii) For k2


� �

2 we have L� = 0, whereas L� is a diagonal matrix with positive entries if

k
2


> �

2.

(iii) Since

L
� := Re (�M�) =

 
(!�)�1 k2(k2



� �

2)1=2k�2



Im � �i�
 k�2



Re �

�i�
 k�2



Re � !� (k2


� �

2)1=2k�2



Im �

!
;

we have L� > 0 if and only if the conditions Im � > 0 and

detL� = k
2 (k2 � �

2 � 

2) (Im �)2 � �

2


2 (Re �)2 > 0

are satis�ed. Setting � = (i + �)=ji + �j with � > 0 su�ciently small, we get the result.

We are now in the position to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Suppose that u; v 2 H1
p
(
) satisfy (cf. (2.29) and (3.4))

0 = B(u; v;u; v)

=

Z



�
N

+
@
+
�

�
u

v

�
� @+

�

�
u

v

�
+N

�
@
�

�

�
u

v

�
� @�

�

�
u

v

�
� !" juj2 � !� jvj2

�

+
X
n2Z

�
M

+
n

�
û
+
n

v̂
+
n

�
�
�
û
+
n

v̂
+
n

�
+M

�

n

�
û
�

n

v̂
�

n

�
�
�
û
�

n

v̂
�

n

��
;

(3.9)

where û�
n
; v̂

�

n
denote the Fourier coe�cients of u; v on ��. Now Lemma 3.1 (i) implies

Re (iN�) � 0 and Lemma 3.2 (i), (ii) (with � replaced by � + n) yields Re (iM�

n
) � 0

for all n 2 Z. Furthermore, Re (i!�) = 0, Re (i!") = �(!�)�1 Im k
2
< 0 in 
1, and

Re (i!") � 0 in 
 in view of (2.11). Hence it follows from (3.9) that

0 = Re (iB(u; v;u; v)) � (!�)�1
Z



(Im k
2) juj2

which implies u = 0 in 
1. Inserting this into (3.9) gives

Re (iB(u; v;u; v)) � Re

Z

1

i

�
N

+
@
+
�

�
0
v

�
� @+

�

�
0
v

�
+N

�
@
�

�

�
0
v

�
� @�

�

�
0
v

��

=

Z

1

!� Im (�k�2


) (j@+

�
vj2 + j@�

�
vj2)=2 � c

Z

1

jr�vj2

with some positive constant c. Hence r�v = 0 in 
1, or equivalently, z := v exp (i�x1) =
const in 
1. Since z satis�es the Helmholtz equation �z+ k

2


z = 0 in 
1 with k

2


6= 0, we

get z = 0 and thus v = 0 in 
1.

Consider now an adjacent subdomain 
2 (where " is constant) with joint boundary �.
Then obviously

uj+� = vj+� = 0; @tuj+� = @tvj+� = 0; @nuj+� = @nvj+� = 0; (3.10)
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and the �rst relation implies uj�� = vj�� = 0 because of [u]� = [v]� = 0. Here the

plus resp. minus sign denotes the limit as � is approached from 
1 resp. 
2. Moreover,

[@tu]� = [@tv]� = 0, and then the transmission conditions (2.19) on � together with (3.10)

imply @nuj�� = @nvj�� = 0. Therefore u; v satisfy homogeneous Helmholtz equations in 
2

with the boundary conditions u = v = @nu = @nv = 0 on some part of the boundary so

that u and v must vanish in 
2. Proceeding in this manner, we �nally obtain u = v = 0
in 
.

Proof of Theorem 3.2. We choose � = (i + �)=ji + �j as in Lemmas 3.1 and 3.2

and show that the form Re (�B) is coercive for all su�ciently small ! > 0. Recall that

k
2 = !

2
�" and that (�; �; 
) = k

+(sin �1 cos�2; cos�1 cos �2; sin�2), where k satis�es

the conditions (2.11). Using (3.4), we obtain from Lemma 3.1 (ii) applied to the matrices

!N
� (which are independent of !)

Re (�B1(u; v;u; v)) � c!
�1

Z



(jr�uj2 + jr�vj2); u; v 2 H1
p
(
); (3.11)

where c is a positive constant not depending on !. Consider the matrices

N
�

n
=

1

(k�


)2

�
!"

�jnj �i
n
�i
n !�jnj

�
; n 6= 0:

Applying Lemma 3.1 (ii) to the matrices !jnj�1N�

n
, which are independent of n and !,

gives

Re (�N�

n
� � �) � c jnj!�1j�j2 ; � 2 C 2 ; n 6= 0 ; (3.12)

with c > 0 not depending on n and !. Furthermore, since

j��
n
� ijnj j = j(k�



)2 � 2�n � �

2j j��
n
+ ijnj j�1 � c1!;

we have the estimate

jjM�

n
�N

�

n
jj C2!C2 � c; n 6= 0;

with positive constants c; c1 not depending on n; n 6= 0; and !; 0 < ! � !0. Together

with (3.12), this implies the uniform estimate

Re (�M�

n
� � �) + c1j�j2 � c jnj!�1j�j2; � 2 C 2; n 6= 0; ! 2 (0; !0]: (3.13)

From Lemma 3.2 (i), (iii) applied to the matrices M�

0 , we further get the inequality

Re (�M�

0 � � �) � c j�j2; � 2 C 2 ; (3.14)

where c > 0 does not depend on !. Finally, we have the obvious uniform bound��� Z



(!"juj2 + !�jvj2)
��� � c0 !

Z



(juj2 + jvj2) : (3.15)

Combining the estimates (3.11), (3.13) � (3.15) and (2.27) gives, for 0 < ! � !0, !0
su�ciently small, and all u; v 2 H1

p
(
)

Re (�B(u; v;u; v))+ c0 !

Z



(juj2 + jvj2)

� c

�Z



(jr�uj2 + jr�vj2) + kuk2
H1=2(�+)

+ kvk2
H1=2(�+)

+ kuk2
H1=2(��)

+ kvk2
H1=2(��)

�
:

(3.16)
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Since the square root of the last expression is an equivalent norm on (H1
p
(
))2 (see e.g.

the proof of [16, Theorem 3.1]), estimate (3.16) �nishes the proof.

3.2 Strong ellipticity of the variational form and further solvabil-

ity results

We call a bounded sesquilinear form a(�; �) given on some Hilbert space X strongly elliptic

if there exists a complex number �, j�j = 1, a constant c > 0 and a compact form q(�; �)
such that

Re (� a(u; u)) � ckuk2
X
� q(u; u) 8 u 2 X :

The following theorem establishes the strong ellipticity of the form (2.29) and leads, to-

gether with Theorems 3.1 and 3.2, to solvability results for the conical di�raction problem

if ! is not small.

Theorem 3.3 Assume k2 > 

2 if k is real. Then the sesquilinear form B de�ned in

(2.29) is strongly elliptic over (H1
p
(
))2.

Proof. Consider an arbitrary but �xed number ! > 0 and choose � = (i + �)=ji+ �j as
in Lemma 3.1. Then estimate (3.11) can be written

Re (�B1(u; v;u; v)) � c

Z



(jr�uj2 + jr�vj2): (3.17)

Furthermore, from (2.27) and (3.13) we obtain

Re

Z
��

� T
�

�

�
u

v

�
�
�
u

v

�
� c (kuk2

H1=2(��) + kvk2
H1=2(��)) (3.18)

for all u; v 2 H1
p
(
) whose nth Fourier coe�cients on �� vanish for all jnj � n0, where n0

is chosen su�ciently large. Since these functions build up a space of �nite codimension,

(3.17) and (3.18) imply that �B is coercive modulo a compact form.

Note that under the assumptions of the preceding theorem the operator B de�ned in

(2.30) is always a Fredholm operator with index 0. Together with Theorem 3.1, this

implies the following existence and uniqueness result.

Corollary 3.1 Suppose that k2 > 

2 if k 2 R and that Im k > 0 on some subdomain of


. Then the variational problem (2.29) has a unique solution in (H1
p
(
))2 for all ! > 0.

We �nally study the solvability of the di�raction problem for arbitrary ! when k is real

in the whole domain 
. Introduce the set of exceptional values (the Rayleigh frequencies)

R(") =
n
(!;�1;�2) : 9n 2 Z such that (k�



)2 = (n+ �)2

o
;

corresponding to physically anomalous behaviour �rst observed by Wood.
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Corollary 3.2 Assume that k2 > 

2 everywhere in 
 and (k�)2 > �

2 + 

2.

(i) The di�raction problem (2.29) is solvable in (H1
p
(
))2 for any frequency !.

(ii) For all but a countable set of frequencies !j , !j !1, the operator

B : H1
p
(
) �H

1
p
(
) �! (H1

p
(
))0 � (H1

p
(
))0

is invertible.

Proof. It follows from Theorem 3.3 that the operator B de�ned in (2.30) is Fredholm

with index 0 for any ! > 0. Moreover, the inequality

Re iB(u; v;u; v)� iM
+
0

�
û
+
0

v̂
+
0

�
�
�
û
+
0

v̂
+
0

�
= !�("+jû+0 j2 + �jv̂+0 j2)

(cf. the proofs of Lemmas 3.1 and 3.2) shows that the right�hand side of (2.29) is orthog-

onal to the kernel of the adjoint operator B� given by�
B�
�
u

v

�
;

�
'

 

��
L2(
)�L2(
)

:= B('; ;u; v) :

Furthermore, by Theorem 3.2 B is invertible for small ! and, for any �xed incident angles

�1;�2 2 (��=2; �=2), the de�nition (2.26) of T�
�

implies that B is an analytic operator

function in ! 2 R+nR(") with an algebroid branching point at any ! 2 R("). Thus (ii)
follows as in the proof of [16, Theorem 3.3] in the case of the classical di�raction problem.

Remark 3.2 If for (!0;�0
1;�

0
2) =2 R(") the di�raction problem is uniquely solvable, then

the solution depends analytically on !;�1;�2 in a neighbourhood of this point. This

follows immediately from the fact that the inverse of an analytic operator function is also

analytic.

4 Singularities of solutions to the di�raction problem

We will restrict ourselves to the case when " is constant in some neighbourhood below

the grating surface �0 and that the other interfaces �j; j = 1; :::; `, do not intersect and

are smooth. Since the regularity of the solution is a local problem, we may simplify the

notation further by assuming that 
0 = ;.
Consider the transmission problem (2.18), (2.19), or equivalently, the variational prob-

lem (2.29). If the grating pro�le is (in�nitely) smooth, then standard regularity theory

shows that any solution (u; v) 2 (H1
p
(
))2 of (2.29) satis�es (u; v)j
� 2 (Hs

p
(
�))2 for ar-

bitrary s > 1. For non�smooth �0, this is not true, even for s = 2, due to the singularities
at the corner points.

We are interested in the leading singularities of the transmission problem in the case

when �0 is a curved polygon, i.e. �0 is smooth with the exception of a �nite number

of corner points. We may assume without loss of generality that O is a corner point of

�0 and that 
+ coincides with the sector S = f(r; �) : 0 < r < 1; j�j < �=2g with

angle � 2 (0; 2�)nf�g in a neighbourhood of this point, whereas �0 is locally given by
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@S = f� = ��=2g [ f� = �=2g. Here (r; �) denote polar coordinates centered at O. To

determine the corner singularities at O with Kondratiev's method [19] (see also [21], [23]

and, in particular, [18], [28], [11] in the case of transmission problems), one applies Mellin

transformation with respect to the radial variable to the model problem

�u = �v = 0 in R
2n@S ;

[u]
@S

= [v]
@S

= 0 ;
h



k2



@tu� !�

k2



@nv

i
@S

=
h



k2



@tv +
!"

k2



@nu

i
@S

= 0 ;

which results from (2.18), (2.19) by neglecting all lower order terms. Since @n = �r�1@=@�,
@t = �@=@r on f� = ��=2g, we arrive at the following eigenvalue problem for a system

of two ordinary di�erential equations:

U
00 + �

2
U = V

00 + �
2
V = 0; � 2 (��=2; �=2) [ (�=2; 2� � �=2) ; (4.1)

[U ]
�=��=2 = [V ]

�=��=2 = 0 ; (4.2)

h

�

k2



U +
!�

k2



V
0

i
�=��=2

=
h

�

k2



V � !"

k2



U
0

i
�=��=2

= 0 : (4.3)

We are looking for complex numbers �; 0 < Re � < 1, such that this problem has a

non�trivial solution (U(�); V (�)). Obviously, the general solution of (4.1) takes the form

(U; V ) =

�
A
+ cos ��+B

+ sin�� ; � 2 (��=2; �=2) ;
A
� cos �(�� �) +B

� sin�(� � �) ; � 2 (�=2; 2� � �=2) ;

where the vectors A� = (A�

1 ; A
�

2 ); B
� = (B�

1 ; B
�

2 ) are to be determined from the trans-

mission conditions (4.2). This leads to an 8� 8 linear system in the unknowns A�

j
; B

�

j
,

j = 1; 2. The following observation reduces its dimension by half. Introduce the terms

(Ue; Ve) =

�
A
+ cos �� ; � 2 (��=2; �=2) ;

A
� cos �(�� �) ; � 2 (�=2; 2� � �=2)

and (Uo; Vo) = (U; V ) � (Ue; Ve), which are even and odd functions, respectively, about

� = 0 and � = �.

Lemma 4.1 If (U; V ) is a solution of problem (4.1) � (4.3), then both the terms (Uo; Ve)
and (Ue; Vo) solve this problem.

Proof. The �rst relation of (4.3) implies

0 =
h

�

k2



U +
!�

k2



V
0

i
�=��=2

=
h

�

k2



(Ue � Uo) +
!�

k2



(V 0

o
� V

0

e
)
i
�=�=2

;

which gives h

�

k2



Ue +
!�

k2



V
0

o

i
�=�=2

=
h

�

k2



Uo +
!�

k2



V
0

e

i
�=�=2

= 0 :

The corresponding relations on f� = ��=2g are then automatically satis�ed. The veri�-

cation of the other transmission conditions is analogous.
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Suppose now that (Uo; Ve) is a non�trivial solution of (4.1) � (4.3) corresponding to the

eigenvalue �; 0 < Re � < 1. Then we obtain the linear system

A
+
2 cos

��

2
� A

�

2 cos�(� � �

2
) = 0

B
+
1 sin

��

2
+ B

�

1 sin �(� � �

2
) = 0


A
+
2 � !"

+
B
+
1

(k+


)2

cos
��

2
� 
A

�

2 � !"
�
B
�

1

(k�


)2

cos �(� � �

2
) = 0


B
+
1 � !�A

+
2

(k+


)2

sin
��

2
+

B

�

1 � !�A
�

2

(k�


)2

sin�(� � �

2
) = 0

(4.4)

We may assume that

sin
��

2
cos

��

2
sin�(� � �

2
) cos�(� � �

2
) 6= 0;

since otherwise it can easily be checked that (4.4) admits only the trivial solution if � =2 Z.
Then (4.4) is equivalent to the 2� 2 system

A
�

2 
!�((k
�)2 � (k+)2) cos �(� � �

2
) sin

��

2

= �B�

1

�
(k+)2(k�



)2 sin�(� � �

2
) cos

��

2
+ (k�)2(k+



)2 cos �(� � �

2
) sin

��

2

�
A
�

2

�
!�(k�



)2 cos �(� � �

2
) sin

��

2
+ !�(k+



)2 sin�(� � �

2
) cos

��

2

�
= �B�

1 
((k
�)2 � (k+)2) sin�(� � �

2
) cos

��

2
;

(4.5)

where we have used the relation !" = k
2
=!�. With the abbreviation

c := � cos
��

2
sin �(� � �

2
)
.
sin

��

2
cos �(� � �

2
)

we see that the determinant D of (4.5) takes the form

D = !� det

 

((k�)2 � (k+)2) (k�)2(k+



)2 � c (k+)2(k�



)2

c
�1(k�



)2 � (k+



)2 �
((k�)2 � (k+)2)

!
:

Moreover, we have D = 0 if and only if

c
2 + (k�=k+)2 � c(1 + (k�=k+)2) = 0;

that is, c = 1 or c = (k�=k+)2. Note that c = 1 is equivalent to sin�� = 0, i.e., � 2Z. We

may assume in the following that k� 6= k
+, since otherwise the transmission conditions

(2.19) would reduce to [@n(u; v)]�0 = 0 implying (u; v) 2 (H2
p
(
))2. Thus we have D = 0

if and only if

(k�=k+)2 = � tan�(� � �=2)= tan (��=2);

or equivalently,

sin (� � �)�

sin ��
=

(k�)2 + (k+)2

(k�)2 � (k+)2
; (4.6)
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and solving the corresponding system (4.4), we obtain that (4.1) � (4.3) has the one�

dimensional eigenspace spanned by

(U0
; V

0) =

8>><
>>:

�
!�


(k+)2
cos �(� � �

2
) sin �� ; cos �(� � �

2
) cos��

�
; � 2 (��

2
;
�

2
) ;

�
!�


(k�)2
cos

��

2
sin�(� � �) ; cos

��

2
cos�(� � �)

�
; � 2 (

�

2
; 2� � �

2
) :

(4.7)

If (Ue; Vo) is a non�trivial solution of (4.1) � (4.3) corresponding to the eigenvalue �,

then analogous considerations lead to the transcendental equation

(k+=k�)2 = � tan�(� � �=2)= tan (��=2);

or equivalently,

sin (� � �)�

sin��
= �(k�)2 + (k+)2

(k�)2 � (k+)2
; (4.8)

and in this case the corresponding eigenspace is spanned by

(U0
; V

0) =

8>><
>>:

�
!�


(k+)2
sin�(

�

2
� �) cos�� ; sin�(� � �

2
) sin��

�
; � 2 (��

2
;
�

2
) ;

�
!�


(k�)2
sin

��

2
cos �(�� �) ; sin

��

2
sin�(� � �)

�
; � 2 (

�

2
; 2� � �

2
) :

(4.9)

Combining (4.6) and (4.8) we obtain the equation

g(�) :=
sin (� � �)�

sin��
= �C; � = �1; C :=

c0 + 1

c0 � 1
; c0 :=

�
k
�

k+

�2
6= 1: (4.10)

The transcendental equation (4.10) occurs already in [28, 11] where transmission prob-

lems for scalar Laplace and Helmholtz equations are studied. A discussion of its zeroes is

given in the following lemma which generalizes [11, Lemma 6.2].

Lemma 4.2 For jk�j 6= k
+ equation (4.10) has exactly one simple root in the strip 0 <

Re � < 1. If jk�j = k
+, then (4.10) has no root in that strip.

Proof. Since C = jc0 � 1j�2(jc0j2 � 1 � 2i Im c0), we observe that C =2 [0; 1]; Re C > 0
for jk�j > k

+, Re C < 0 for jk�j < k
+ and that Re C = 0 for jk�j = k

+.

Let � = � + i�; 0 � � < 1; � 2 R, and suppose �rst that 0 < � < �. For � = 0; g(�)
traverses the segment [0; 1 � �=�] twice as � runs from �1 to +1, whereas for � 2
(0; 1) the circle of centre (sin (� � �)�=2 sin ��; 0) and diameter d� = sin (� � �)�= sin ��
is traversed. Note that d� ! 1 as � ! 1�. Applying the Argument Principle to

the function g(�) � �C and calculating the change in argument of this function on the

boundary of the rectangles [0; 1� �]� [�iN; iN ] as N !1 and �! 0+, we then obtain

that in 0 < Re � < 1 (4.10) has exactly one root of multiplicity one if Re �C > 0
and no zero if Re �C � 0. In the case � < � < 2� analogous considerations yield the

reverse statement, that is, (4.10) has exactly one simple root in the strip 0 < Re � < 1 if

Re �C < 0, whereas it has no root there if Re �C � 0.
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Denote by �0 the unique zero of (4.10) in the strip 0 < Re� < 1 if it exists. Kondratiev's
method of local Mellin transformation and the above discussion imply the following result

on the leading singularities of the di�raction problem. Note that, by virtue of Lemma 4.2,

Green's function of the eigenvalue problem (4.1) � (4.3) has a simple pole at �0; compare

the proof of [14, Lemma XIX.4.6].

Theorem 4.1 Let � be a smooth cut�o� function near the corner point O. Then any

solution (u; v) 2 (H1
p
(
))2 of (2.29) admits the decomposition

�(u; v) = (C1; C2) + C3r
�
0

(U0
; V

0) + (u1; v1); (4.11)

where Cj (j = 1; 2; 3) are certain complex constants, and (U0
; V

0) is given by (4.7) resp.

(4.9) if �0 solves equation (4.10) with � = +1 resp. � = �1. The remainder term in

(4.11) satis�es

(u1; v1)j
� 2 (H2��(
�))2 for all � > 0:

Remark 4.1 (i) Note that (4.10) is the same transcendental equation as in the case of

classical di�raction, i.e. for 
 = 0. This result is as expected, since 
 only enters the

data of the original boundary value problem for Maxwell's equations in a smooth manner;

see Section 2.2. To our knowledge, there is no direct approach to the singularities of

solutions to transmission problems for the Maxwell equations so far; see, however, [10] for

the Dirichlet and Neumann problems.

(ii) The term r
�
0

(U0
; V

0) occurring in (4.11) only depends on the geometry of the domain

near the corner point O, whereas the constants Cj are of global nature depending, in

particular, on the incoming wave. They are uniquely determined if the variational solution

of the di�raction problem is unique. For 
 = 0, (4.7) and (4.9) imply U0 = 0, which
corresponds to the fact that u then solves the classical TE di�raction problem and satis�es

u 2 H
2
p
(
); compare [16, Corollary 3.1]. For 
 6= 0 and jk�j = k

+, the second term in

(4.11) vanishes in view of Lemma 4.2.

(iii) Using the above considerations, it can be shown that the higher order terms in the

asymptotical development of u and v have the same form as in the case of the classical

TM di�raction problem; see [16, Section 3.3].

(iv) From (2.12), (4.11) and the representations (4.7), (4.9) it is easy to derive the main

asymptotics of the x1� and x2�components of the electric �eld E which are not H1�regular

near the edges of the grating interfaces.
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