3,266 research outputs found

    Direct stau production at the LHC

    Full text link
    We investigate the direct production of supersymmetric scalar taus at the LHC. We present the general calculation of the dominant cross section contributions for hadronic stau pair production within the MSSM, taking into account left-right mixing of the stau eigenstates. We find that b-quark annihilation and gluon fusion can enhance the cross sections by more than one order of magnitude with respect to the Drell-Yan predictions. For long-lived staus, we consider CMSSM parameter regions with such enhanced cross sections and possible consequences from recent searches. We find that regions of exceptionally small stau yields, favoured by cosmology, are in tension with a recent CMS limit on m_stau.Comment: 9 pages, 6 figures, Talk given at the workshop "School and Workshops on Elementary Particle Physics and Gravity" September 4-18, 2011 Corfu, Greec

    Structural investigations of CeIrIn5{_5} and CeCoIn5{_5} on macroscopic and atomic length scales

    Full text link
    For any thorough investigation of complex physical properties, as encountered in strongly correlated electron systems, not only single crystals of highest quality but also a detailed knowledge of the structural properties of the material are pivotal prerequisites. Here, we combine physical and chemical investigations on the prototypical heavy fermion superconductors CeIrIn5{_5} and CeCoIn5{_5} on atomic and macroscopic length scale to gain insight into their precise structural properties. Our approach spans from enhanced resolution X-ray diffraction experiments to atomic resolution by means of Scanning Tunneling Microscopy (STM) and reveal a certain type of local features (coexistence of minority and majority structural patterns) in the tetragonal HoCoGa5_5-type structure of both compounds.Comment: 8 pages, 5 figures, submitted to JPSJ (SCES 2013

    Gravitino Dark Matter and Cosmological Constraints

    Get PDF
    The gravitino is a promising candidate for cold dark matter. We study cosmological constraints on scenarios in which the gravitino is the lightest supersymmetric particle and a charged slepton the next-to-lightest supersymmetric particle (NLSP). We obtain new results for the hadronic nucleosynthesis bounds by computing the 4-body decay of the NLSP slepton into the gravitino, the associated lepton, and a quark-antiquark pair. The bounds from the observed dark matter density are refined by taking into account gravitinos from both late NLSP decays and thermal scattering in the early Universe. We examine the present free-streaming velocity of gravitino dark matter and the limits from observations and simulations of cosmic structures. Assuming that the NLSP sleptons freeze out with a thermal abundance before their decay, we derive new bounds on the slepton and gravitino masses. The implications of the constraints for cosmology and collider phenomenology are discussed and the potential insights from future experiments are outlined. We propose a set of benchmark scenarios with gravitino dark matter and long-lived charged NLSP sleptons and describe prospects for the Large Hadron Collider and the International Linear Collider.Comment: 51 pages, 20 figures, revised version matches published version (results unchanged, JHEP style used, figures replaced with new high-quality figures, typos corrected, references added

    Hard Thermal Photon Production in Relativistic Heavy Ion Collisions

    Get PDF
    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.Comment: 20 pages with 8 figures. v3: Erratum to [Phys. Lett. B 510 (2001) 98] with correctly labeled Figs. 2, 4, and 5 adde

    Nonlinear Realization of Chiral Symmetry on the Lattice

    Full text link
    We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.Comment: 34 pages, 2 figures, revised version to be published in J. High Energy Phys. (changes in the 1st paragraph, additional descriptions on the nature of the coordinate singularities in Sec.2, references added

    The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    Full text link
    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.Comment: 41 pages, 6 figures; submitted to the Astronomical Journa

    Axino dark matter from thermal production

    Full text link
    The axino is a promising candidate for dark matter in the Universe. It is electrically and color neutral, very weakly interacting, and could be - as assumed in this study - the lightest supersymmetric particle, which is stable for unbroken R-parity. In supersymmetric extensions of the standard model, in which the strong CP problem is solved via the Peccei-Quinn mechanism, the axino arises naturally as the fermionic superpartner of the axion. We compute the thermal production rate of axinos in supersymmetric QCD. Using hard thermal loop resummation, we obtain a finite result in a gauge-invariant way, which takes into account Debye screening in the hot quark-gluon-squark-gluino plasma. The relic axino abundance from thermal scatterings after inflation is evaluated. We find that thermally produced axinos could provide the dominant part of cold dark matter, for example, for an axino mass of 100 keV and a reheating temperature of 10^6 GeV.Comment: 33 pages, 7 figures, 1 table, erratum adde
    corecore