490 research outputs found

    Time resolved structural dynamics of butadiyne-linked porphyrin dimers

    Get PDF
    In this work the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump / broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through addition of a ligand, provide conclusive evidence for the twisting motion performed by the porphyrin dimer in solution

    Widefield phototransient imaging for visualizing 3D motion of resonant particles in scattering environments

    Get PDF
    : Identifying, visualising and ultimately tracking dynamically moving non-fluorescent nanoparticles in the presence of non-specific scattering is a long-standing challenge across the nano- and life-sciences. In this work we demonstrate that our recently developed ultrafast holographic transient (UHT) microscope is ideally suited for meeting this challenge. We show that UHT microscopy allows reliably distinguishing off-resonant, dielectric, from resonant, metallic, nanoparticles, based on the phototransient signal: a pre-requisite for single-particle tracking in scattering environments. We then demonstrate the capability of UHT microscopy to holographically localize in 3D single particles over large volumes of view. Ultimately, we combine the two concepts to simultaneously track several tens of freely diffusing gold nanoparticles, within a 110 × 110 × 110 μm volume of view at an integration time of 10 ms per frame, while simultaneously recording their phototransient signals. The combined experimental concepts outlined and validated in this work lay the foundation for background-free 3D single-particle tracking applications or spectroscopy in scattering environments and are immediately applicable to systems as diverse as live cells and tissues or supported heterogeneous catalysts

    Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: The role of the laser spectrum

    Get PDF
    The observation of coherent quantum effects in photosynthetic light-harvesting complexes prompted the question whether quantum coherence could be exploited to improve the efficiency in new energy materials. The detailed characterization of coherent effects relies on sensitive methods such as two-dimensional electronic spectroscopy (2D-ES). However, the interpretation of the results produced by 2D-ES is challenging due to the many possible couplings present in complex molecular structures. In this work, we demonstrate how the laser spectral profile can induce electronic coherence-like signals in monomeric chromophores, potentially leading to data misinterpretation. We argue that the laser spectrum acts as a filter for certain coherence pathways and thus propose a general method to differentiate vibrational from electronic coherences

    Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy

    Get PDF
    In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm–1 vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model

    Molecular Mechanisms of Light Harvesting in the Minor Antenna {CP}29 in Near-Native Membrane Lipidic Environment

    Get PDF
    CP29, a chlorophyll a/b-xanthophyll binding protein, bridges energy transfer between the major LHCII antenna complexes and photosystem II reaction centers. It hosts one of the two identified quenching sites, making it crucial for regulated photoprotection mechanisms. Until now, the photophysics of CP29 has been studied on the purified protein in detergent solutions since spectrally overlapping signals affect in vivo measurements. However, the protein in detergent assumes non-native conformations compared to its physiological state in the thylakoid membrane. Here, we report a detailed photophysical study on CP29 inserted in discoidal lipid bilayers, known as nanodiscs, which mimic the native membrane environment. Using picosecond time-resolved fluorescence and femtosecond transient absorption (TA), we observed shortening of the Chl fluorescence lifetime with a decrease of the carotenoid triplet formation yield for CP29 in nanodiscs as compared to the protein in detergent. Global analysis of TA data suggests a (1)Chl* quenching mechanism dependent on excitation energy transfer to a carotenoid dark state, likely the proposed S*, which is believed to be formed due to a carotenoid conformational change affecting the S-1 state. We suggest that the accessibility of the S* state in different local environments plays a key role in determining the quenching of Chl excited states. In vivo, non-photochemical quenching is activated by de-epoxidation of violaxanthin into zeaxanthin. CP29-zeaxanthin in nanodiscs further shortens the Chl lifetime, which underlines the critical role of zeaxanthin in modulating photoprotection activity.Published under an exclusive license by AIP Publishing

    Rapid-scan nonlinear time-resolved spectroscopy over arbitrary delay intervals

    Full text link
    Femtosecond dual-comb lasers have revolutionized linear Fourier-domain spectroscopy by offering a rapid motion-free, precise and accurate measurement mode with easy registration of the combs beat note in the RF domain. Extensions of this technique found already application for nonlinear time-resolved spectroscopy within the energy limit available from sources operating at the full oscillator repetition rate. Here, we present a technique based on time filtering of femtosecond frequency combs by pulse gating in a laser amplifier. This gives the required boost to the pulse energy and provides the flexibility to engineer pairs of arbitrarily delayed wavelength-tunable pulses for pump-probe techniques. Using a dual-channel millijoule amplifier, we demonstrate programmable generation of both extremely short, fs, and extremely long (>ns) interpulse delays. A predetermined arbitrarily chosen interpulse delay can be directly realized in each successive amplifier shot, eliminating the massive waiting time required to alter the delay setting by means of an optomechanical line or an asynchronous scan of two free-running oscillators. We confirm the versatility of this delay generation method by measuring chi^(2) cross-correlation and chi^(3) multicomponent population recovery kinetics

    Case-Control Study of Vitamin D, dickkopf homolog 1 (DKK1) Gene Methylation, VDR Gene Polymorphism and the Risk of Colon Adenoma in African Americans

    Get PDF
    There are sparse data on genetic, epigenetic and vitamin D exposure in African Americans (AA) with colon polyp. Consequently, we evaluated serum 25(OH) D levels, vitamin D receptor (VDR) polymorphisms and the methylation status of the tumor suppressor gene dickkopf homolog 1 (DKK1) as risk factors for colon polyp in this population.The case-control study consisted of 93 patients with colon polyp (cases) and 187 healthy individuals (controls) at Howard University Hospital. Serum levels of 25(OH)D (including D3, D2, and total) were measured by liquid chromatography-mass spectrometry. DNA analysis focused on 49 single nucleotide polymorphisms (SNPs) in the VDR gene. Promoter methylation analysis of DKK1 was also performed. The resulting data were processed in unadjusted and multivariable logistic regression analyses.Cases and controls differed in vitamin D status (D(3)<50 nmol/L: Median of 35.5 in cases vs. 36.8 in controls nmol/L; P = 0.05). Low levels of 25(OH)D(3) (<50 nmol/L) were observed in 86% of cases and 68% of controls and it was associated with higher risks of colon polyp (odds ratio of 2.7, 95% confidence interval 1.3-3.4). The SNP analysis showed no association between 46 VDR polymorphisms and colon polyp. The promoter of the DKK1 gene was unmethylated in 96% of the samples.We found an inverse association between serum 25(OH)D(3) and colon polyp in AAs. VDR SNPs and DKK1 methylation were not associated with colon polyp. Vitamin D levels may in part explain the higher incidence of polyp in AAs

    Validation of <i>N</i>-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of <i>Trypanosoma cruzi</i>

    Get PDF
    BACKGROUND:Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS:Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE:Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy
    corecore